pythn's picture
Upload with huggingface_hub
4a1f918 verified
import torch
from torch import nn
from torch.nn import functional as F
from einops import rearrange
from typing import Type
class SVDLinear(nn.Linear):
def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None, mlp_transform=False, fraction_trainable=1) -> None:
super().__init__(in_features, out_features, bias, device, dtype)
self.U, self.S, self.Vt = torch.linalg.svd(self.weight, full_matrices=False)
self.weight.requires_grad = False
self.done_svd = False
self.mlp_transform = mlp_transform
if mlp_transform:
self.trainable_mlp = MLPBlock2(
embedding_dim=self.S.shape[0],
mlp_dim=256
)
else:
S_len = (self.S.shape[0])
# self.trainable_scale = nn.Parameter(torch.ones(int(S_len*1)))
self.trainable_scale = nn.Parameter(torch.ones(int(S_len*fraction_trainable)))
# self.trainable_shift = nn.Parameter(torch.zeros(int(S_len*0)))
self.trainable_shift = nn.Parameter(torch.zeros(int(S_len*fraction_trainable)))
self.frozen_scale = torch.ones(S_len-self.trainable_scale.shape[0])
self.frozen_shift = torch.ones(S_len - self.trainable_shift.shape[0])
self.reset_parameters()
def perform_svd(self):
self.U, self.S, self.Vt = torch.linalg.svd(self.weight, full_matrices=False)
self.done_svd = True
def reset_parameters(self):
nn.Linear.reset_parameters(self)
if hasattr(self, 'trainable_shift'):
nn.init.zeros_(self.trainable_shift)
if hasattr(self, 'trainable_scale'):
nn.init.ones_(self.trainable_scale)
def forward(self, input: torch.Tensor):
if not self.done_svd:
self.perform_svd()
if self.mlp_transform:
s_new = (self.trainable_mlp((self.S.to(input.device)).flatten())).reshape(self.S.shape)
weight_updated = self.U.to(input.device, dtype=input.dtype) @ torch.diag(F.relu(s_new)).to(input.device) @ self.Vt.to(device=input.device, dtype=input.dtype)
reg_loss = torch.norm(s_new - self.S)
else:
scale = torch.cat([self.trainable_scale,self.frozen_scale.to(input.device)])
shift = torch.cat([self.trainable_shift, self.frozen_shift.to(input.device)])
weight_updated = self.U.to(input.device, dtype=input.dtype) @ torch.diag(F.relu(scale.to(input.device, dtype=input.dtype)*self.S.to(input.device, dtype=input.dtype) + shift)) @ self.Vt.to(device=input.device, dtype=input.dtype)
reg_loss = torch.norm(1 - self.trainable_scale) + torch.norm(self.trainable_shift)
return F.linear(input, weight_updated, self.bias), reg_loss
#adapted from https://github.com/phymhan/SVDiff
class SVDConv2d(nn.Conv2d):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
scale: float = 1.0,
mlp_transform: bool = False,
fraction_trainable=1,
**kwargs
):
nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, **kwargs)
assert type(kernel_size) is int
weight_reshaped = rearrange(self.weight, 'co cin h w -> co (cin h w)')
self.U, self.S, self.Vt = torch.linalg.svd(weight_reshaped, full_matrices=False)
# initialize to 0 for smooth tuning
self.weight.requires_grad = False
self.done_svd = False
self.mlp_transform = mlp_transform
if mlp_transform:
self.trainable_mlp = MLPBlock2(
embedding_dim=self.S.shape[0],
mlp_dim=256
)
else:
S_len = (self.S.shape[0])
# self.trainable_scale = nn.Parameter(torch.ones(int(S_len*1)))
self.trainable_scale = nn.Parameter(torch.ones(int(S_len*fraction_trainable)))
# self.trainable_shift = nn.Parameter(torch.zeros(int(S_len*0)))
self.trainable_shift = nn.Parameter(torch.zeros(int(S_len*fraction_trainable)))
self.frozen_scale = torch.ones(S_len-self.trainable_scale.shape[0])
self.frozen_shift = torch.ones(S_len - self.trainable_shift.shape[0])
self.reset_parameters()
def perform_svd(self):
# shape
weight_reshaped = rearrange(self.weight, 'co cin h w -> co (cin h w)')
self.U, self.S, self.Vt = torch.linalg.svd(weight_reshaped, full_matrices=False)
self.done_svd = True
def reset_parameters(self):
nn.Conv2d.reset_parameters(self)
if hasattr(self, 'trainable_shift'):
nn.init.zeros_(self.trainable_shift)
if hasattr(self, 'trainable_scale'):
nn.init.ones_(self.trainable_scale)
def forward(self, x: torch.Tensor):
if not self.done_svd:
# this happens after loading the state dict
self.perform_svd()
if self.mlp_transform:
s_new = (self.trainable_mlp((self.S.to(x.device)).flatten())).reshape(self.S.shape)
weight_updated = self.U.to(x.device, dtype=x.dtype) @ torch.diag(F.relu(s_new)).to(x.device) @ self.Vt.to(device=x.device, dtype=x.dtype)
reg_loss = torch.norm(s_new - self.S)
else:
scale = torch.cat([self.trainable_scale,self.frozen_scale.to(x.device)])
shift = torch.cat([self.trainable_shift, self.frozen_shift.to(x.device)])
weight_updated = self.U.to(x.device, dtype=x.dtype) @ torch.diag(F.relu(scale.to(x.device, dtype=x.dtype)*self.S.to(x.device, dtype=x.dtype) + shift)) @ self.Vt.to(device=x.device, dtype=x.dtype)
reg_loss = torch.norm(1 - self.trainable_scale) + torch.norm(self.trainable_shift)
weight_updated = rearrange(weight_updated, 'co (cin h w) -> co cin h w', cin=self.weight.size(1), h=self.weight.size(2), w=self.weight.size(3))
return F.conv2d(x, weight_updated, self.bias, self.stride, self.padding, self.dilation, self.groups), reg_loss
class MLPBlock2(nn.Module):
def __init__(
self,
embedding_dim: int,
mlp_dim: int,
act: Type[nn.Module] = nn.GELU,
) -> None:
super().__init__()
self.lin1 = nn.Linear(embedding_dim, mlp_dim)
self.lin2 = nn.Linear(mlp_dim, embedding_dim)
self.act = act()
def forward(self, x: torch.Tensor) -> torch.Tensor:
out = self.lin1(x)
out = self.lin2(self.act(out))
return out