import torch import yaml import sys import copy import os sys.path.append("/home/ubuntu/Desktop/Domain_Adaptation_Project/repos/SVDSAM/") from data_utils import * from model import * from utils import * label_names = ['Left Prograsp Forceps', 'Maryland Bipolar Forceps', 'Right Prograsp Forceps', 'Left Large Needle Driver', 'Right Large Needle Driver', 'Left Grasping Retractor', 'Right Grasping Retractor', 'Vessel Sealer', 'Monopolar Curved Scissors'] visualize_li = [[1,0,0],[0,1,0],[1,0,0], [0,0,1], [0,0,1]] label_dict = {} visualize_dict = {} for i,ln in enumerate(label_names): label_dict[ln] = i # visualize_dict[ln] = visualize_li[i] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--data_folder', default='config_tmp.yml', help='data folder file path') parser.add_argument('--data_config', default='config_tmp.yml', help='data config file path') parser.add_argument('--model_config', default='model_baseline.yml', help='model config file path') parser.add_argument('--pretrained_path', default=None, help='pretrained model path') parser.add_argument('--save_path', default='checkpoints/temp.pth', help='pretrained model path') parser.add_argument('--gt_path', default='', help='ground truth path') parser.add_argument('--device', default='cuda:0', help='device to train on') parser.add_argument('--labels_of_interest', default='Left Prograsp Forceps,Maryland Bipolar Forceps,Right Prograsp Forceps,Left Large Needle Driver,Right Large Needle Driver', help='labels of interest') parser.add_argument('--codes', default='1,2,1,3,3', help='numeric label to save per instrument') args = parser.parse_args() return args def main(): args = parse_args() with open(args.data_config, 'r') as f: data_config = yaml.load(f, Loader=yaml.FullLoader) with open(args.model_config, 'r') as f: model_config = yaml.load(f, Loader=yaml.FullLoader) labels_of_interest = args.labels_of_interest.split(',') codes = args.codes.split(',') codes = [int(c) for c in codes] #make folder to save visualizations os.makedirs(os.path.join(args.save_path,"preds"),exist_ok=True) os.makedirs(os.path.join(args.save_path,"rescaled_preds"),exist_ok=True) if args.gt_path: os.makedirs(os.path.join(args.save_path,"rescaled_gt"),exist_ok=True) #load model # model = Prompt_Adapted_SAM(config=model_config, label_text_dict=label_dict, device=args.device) model = Prompt_Adapted_SAM(config=model_config, label_text_dict=label_dict, device=args.device, training_strategy='lora') if args.pretrained_path: model.load_state_dict(torch.load(args.pretrained_path, map_location=args.device)) model = model.to(args.device) model = model.eval() #load data transform data_transform = ENDOVIS_Transform(config=data_config) #dice dices = [] ious = [] #load data for i,img_name in enumerate(sorted(os.listdir(args.data_folder))): if i%5!=0: continue img_path = (os.path.join(args.data_folder,img_name)) if args.gt_path: label_name = labels_of_interest[0].replace(' ','_')+'_labels' #for test data, the labels are arranged differently so uncomment the line below gt_path = (os.path.join(args.gt_path,img_name)) # gt_path = (os.path.join(args.gt_path,label_name,img_name)) # print(img_path) img = torch.as_tensor(np.array(Image.open(img_path).convert("RGB"))) img = img.permute(2,0,1) C,H,W = img.shape #make a dummy mask of shape 1XHXW if args.gt_path: label = torch.as_tensor(np.array(Image.open(gt_path))).unsqueeze(0) #for test data, the labels are arranged differently so uncomment th line below label = (label==codes[0])+0 label = (label>0)+0 else: label = torch.zeros((1,H,W)) img, label = data_transform(img, label, is_train=False, apply_norm=True) label = (label>0.5)+0 #get image embeddings img = img.unsqueeze(0).to(args.device) #1XCXHXW img_embeds = model.get_image_embeddings(img) # generate masks for all labels of interest img_embeds_repeated = img_embeds.repeat(len(labels_of_interest),1,1,1) x_text = [t for t in labels_of_interest] masks = model.get_masks_for_multiple_labels(img_embeds_repeated, x_text).cpu() argmax_masks = torch.argmax(masks, dim=0) final_mask = torch.zeros(masks[0].shape) final_mask_rescaled = torch.zeros(masks[0].shape).unsqueeze(-1).repeat(1,1,3) #save masks for i in range(final_mask.shape[0]): for j in range(final_mask.shape[1]): final_mask[i,j] = codes[argmax_masks[i,j]] if masks[argmax_masks[i,j],i,j]>=0.5 else 0 # final_mask_rescaled[i,j] = torch.Tensor(visualize_dict[(labels_of_interest[argmax_masks[i,j]])] if masks[argmax_masks[i,j],i,j]>=0.5 else [0,0,0]) # save_im = Image.fromarray(final_mask.numpy()) # save_im.save(os.path.join(args.save_path,'preds', img_name)) # plt.imshow(final_mask_rescaled,cmap='gray') # plt.savefig(os.path.join(args.save_path,'rescaled_preds', img_name)) # plt.close() # print("label shape: ", label.shape) # plt.imshow(label[0], cmap='gray') # plt.show() plt.imshow((masks[0]>0.5), cmap='gray') plt.savefig(os.path.join(args.save_path,'rescaled_preds', img_name)) plt.close() if args.gt_path: plt.imshow((label[0]), cmap='gray') plt.savefig(os.path.join(args.save_path,'rescaled_gt', img_name)) plt.close() # print("dice: ",dice_coef(label, (masks>0.5)+0)) dices.append(dice_coef(label, (masks>0.5)+0)) ious.append(iou_coef(label, (masks>0.5)+0)) # break print("Dice: ",torch.mean(torch.Tensor(dices))) print("IoU: ",torch.mean(torch.Tensor(ious))) if __name__ == '__main__': main() # { # "Bipolar Forceps": 1, # "Prograsp Forceps": 2, # "Large Needle Driver": 3, # "Vessel Sealer": 4, # "Grasping Retractor": 5, # "Monopolar Curved Scissors": 6, # "Other": 7 # }