import torch import yaml import sys import copy import os sys.path.append("/home/ubuntu/Desktop/Domain_Adaptation_Project/repos/SVDSAM/") from data_utils import * from model import * from utils import * from data_transforms.glas_transform import GLAS_Transform label_names = ['Glands'] label_dict = {} # visualize_dict = {} for i,ln in enumerate(label_names): label_dict[ln] = i # visualize_dict[ln] = visualize_li[i] def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--data_folder', default='config_tmp.yml', help='data folder file path') parser.add_argument('--data_config', default='config_tmp.yml', help='data config file path') parser.add_argument('--model_config', default='model_baseline.yml', help='model config file path') parser.add_argument('--pretrained_path', default=None, help='pretrained model path') parser.add_argument('--save_path', default='checkpoints/temp.pth', help='pretrained model path') parser.add_argument('--gt_path', default='', help='ground truth path') parser.add_argument('--device', default='cuda:0', help='device to train on') parser.add_argument('--labels_of_interest', default='Left Prograsp Forceps,Maryland Bipolar Forceps,Right Prograsp Forceps,Left Large Needle Driver,Right Large Needle Driver', help='labels of interest') parser.add_argument('--codes', default='1,2,1,3,3', help='numeric label to save per instrument') args = parser.parse_args() return args def main(): args = parse_args() with open(args.data_config, 'r') as f: data_config = yaml.load(f, Loader=yaml.FullLoader) with open(args.model_config, 'r') as f: model_config = yaml.load(f, Loader=yaml.FullLoader) labels_of_interest = args.labels_of_interest.split(',') #make folder to save visualizations os.makedirs(os.path.join(args.save_path,"preds"),exist_ok=True) os.makedirs(os.path.join(args.save_path,"rescaled_preds"),exist_ok=True) if args.gt_path: os.makedirs(os.path.join(args.save_path,"rescaled_gt"),exist_ok=True) #load model # model = Prompt_Adapted_SAM(config=model_config, label_text_dict=label_dict, device=args.device, training_strategy='svdtuning') model = Prompt_Adapted_SAM(config=model_config, label_text_dict=label_dict, device=args.device, training_strategy='lora') #legacy model support if args.pretrained_path: sdict = torch.load(args.pretrained_path, map_location=args.device) # for key in list(sdict.keys()): # if 'sam_encoder.neck' in key: # if '0' in key: # new_key = key.replace('0','conv1') # if '1' in key: # new_key = key.replace('1','ln1') # if '2' in key: # new_key = key.replace('2','conv2') # if '3' in key: # new_key = key.replace('3','ln2') # sdict[new_key] = sdict[key] # _ = sdict.pop(key) # if 'mask_decoder' in key: # if 'trainable' in key: # _ = sdict.pop(key) model.load_state_dict(sdict,strict=True) model = model.to(args.device) model = model.eval() #load data transform data_transform = GLAS_Transform(config=data_config) #dice dices = [] ious=[] #load data for i,img_name in enumerate(sorted(os.listdir(args.data_folder))): if (('png' not in img_name) and ('jpg' not in img_name) and ('jpeg' not in img_name) and ('bmp' not in img_name)): continue if 'anno' in img_name: continue # if i%5!=0: # continue img_path = (os.path.join(args.data_folder,img_name)) if args.gt_path: gt_path = (os.path.join(args.data_folder,img_name[:-4]+'_anno.bmp')) # print(img_path) img = torch.as_tensor(np.array(Image.open(img_path).convert("RGB"))) img = img.permute(2,0,1) C,H,W = img.shape #make a dummy mask of shape 1XHXW if args.gt_path: label = torch.Tensor(np.array(Image.open(gt_path))) if len(label.shape)==3: label = label[:,:,0] label = label.unsqueeze(0) mask = (label>0)+0 # plt.imshow(gold) # plt.show() else: mask = torch.zeros((1,H,W)) img, mask = data_transform(img, mask, is_train=False, apply_norm=True) mask = (mask>=0.5)+0 #get image embeddings img = img.unsqueeze(0).to(args.device) #1XCXHXW img_embeds = model.get_image_embeddings(img) # generate masks for all labels of interest img_embeds_repeated = img_embeds.repeat(len(labels_of_interest),1,1,1) x_text = [t for t in labels_of_interest] masks = model.get_masks_for_multiple_labels(img_embeds_repeated, x_text).cpu() plt.imshow((masks[0]>=0.5), cmap='gray') plt.savefig(os.path.join(args.save_path,'rescaled_preds', img_name[:-4]+'.png')) plt.close() if args.gt_path: plt.imshow((mask[0]), cmap='gray') plt.savefig(os.path.join(args.save_path,'rescaled_gt', img_name[:-4]+'.png')) plt.close() # print("dice: ",dice_coef(label, (masks>0.5)+0)) dices.append(dice_coef(mask, (masks>=0.5)+0)) ious.append(iou_coef(mask, (masks>=0.5)+0)) # break print(torch.mean(torch.Tensor(dices))) print(torch.mean(torch.Tensor(ious))) if __name__ == '__main__': main()