import torch from torch import nn from torch.nn import functional as F from typing import Type class LoRALinear(nn.Linear): def __init__(self, in_features: int, out_features: int, bias: bool = True, device=None, dtype=None, r=4, scale=1) -> None: super().__init__(in_features, out_features, bias, device, dtype) self.r = r self.trainable_lora_down = nn.Linear(in_features, r, bias=False) self.dropout = nn.Dropout(0.1) self.trainable_lora_up = nn.Linear(r, out_features, bias=False) self.scale = scale self.selector = nn.Identity() nn.init.normal_(self.trainable_lora_down.weight, std=1/r) nn.init.zeros_(self.trainable_lora_up.weight) def forward(self, input): out = F.linear(input, self.weight, self.bias) + self.scale*self.dropout(self.trainable_lora_up(self.selector(self.trainable_lora_down(input)))) return out,0 class LoRAConv2D(nn.Conv2d): def __init__(self, in_channels: int, out_channels: int, kernel_size, stride = 1, padding = 0, dilation = 1, groups = 1, bias = True, padding_mode: str = 'zeros', device=None, dtype=None, r=4, scale=1) -> None: super().__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias, padding_mode, device, dtype) assert type(kernel_size) is int self.r = r self.scale = scale self.trainable_lora_down = nn.Conv2d( in_channels = in_channels, out_channels = r, kernel_size = kernel_size, bias=False ) self.dropout = nn.Dropout(0.1) self.trainable_lora_up = nn.Conv2d( in_channels=r, out_channels=out_channels, kernel_size=1, bias=False ) self.selector = nn.Identity() self.scale = scale nn.init.normal_(self.trainable_lora_down.weight, std=1/r) nn.init.zeros_(self.trainable_lora_up.weight) def forward(self, input): out = F.conv2d(input, self.weight, self.bias, self.stride) out = out + self.scale*self.dropout(self.trainable_lora_up(self.selector(self.trainable_lora_down(input)))) return out,0