# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import torch import torch.nn as nn from typing import Type from .svd_layers import SVDLinear # from .SALT_layers_please_work import SALTLinear from .SALT_layers_3 import SALTLinear , SALTConv2d from .lora_layers import LoRAConv2D, LoRALinear class MLPBlock(nn.Module): def __init__( self, embedding_dim: int, mlp_dim: int, act: Type[nn.Module] = nn.GELU, mlp_transform=False, use_lora = False ) -> None: super().__init__() if use_lora: self.lin1 = LoRALinear(embedding_dim, mlp_dim) self.lin2 = LoRALinear(mlp_dim, embedding_dim) else: # self.lin1 = SVDLinear(embedding_dim, mlp_dim, mlp_transform=mlp_transform) # self.lin2 = SVDLinear(mlp_dim, embedding_dim, mlp_transform=mlp_transform) rank_value = 500 # print("\nEmbedding dim in MLP Block is" ,embedding_dim) # print("\n no need for MLP transform" , mlp_transform) self.lin1 = SALTLinear(embedding_dim, mlp_dim, rank=rank_value , r_lora=256 , rsLora=False,alpha=1) self.lin2 = SALTLinear(mlp_dim, embedding_dim, rank=rank_value , r_lora=256 , rsLora=False,alpha=1) self.act = act() def forward(self, x: torch.Tensor, output_loss=True) -> torch.Tensor: out, reg_loss1 = self.lin1(x) out, reg_loss2 = self.lin2(self.act(out)) if output_loss: return out, (reg_loss1+reg_loss2) else: return out class MLPBlock2(nn.Module): def __init__( self, embedding_dim: int, mlp_dim: int, act: Type[nn.Module] = nn.GELU, ) -> None: super().__init__() self.lin1 = nn.Linear(embedding_dim, mlp_dim) self.lin2 = nn.Linear(mlp_dim, embedding_dim) self.act = act() def forward(self, x: torch.Tensor) -> torch.Tensor: out = self.lin1(x) out = self.lin2(self.act(out)) return out # From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa # Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119 # noqa class LayerNorm2d(nn.Module): def __init__(self, num_channels: int, eps: float = 1e-6) -> None: super().__init__() self.weight = nn.Parameter(torch.ones(num_channels)) self.bias = nn.Parameter(torch.zeros(num_channels)) self.eps = eps def forward(self, x: torch.Tensor) -> torch.Tensor: u = x.mean(1, keepdim=True) s = (x - u).pow(2).mean(1, keepdim=True) x = (x - u) / torch.sqrt(s + self.eps) x = self.weight[:, None, None] * x + self.bias[:, None, None] return x