File size: 7,756 Bytes
2b41a4f
 
dde60eb
 
e000da2
 
 
 
 
 
 
 
 
 
533e12f
 
e000da2
2b41a4f
 
53e8363
 
 
a175b5e
d91159a
a175b5e
 
 
44ba3bc
 
 
 
7067377
 
 
 
44ba3bc
 
7067377
44ba3bc
d8b6e3c
 
44ba3bc
7067377
44ba3bc
 
b92ceeb
7067377
 
 
 
 
44ba3bc
 
 
7067377
44ba3bc
d8b6e3c
b92ceeb
 
d8b6e3c
 
 
 
 
 
 
 
 
 
 
b92ceeb
d8b6e3c
 
 
 
b92ceeb
 
 
 
 
 
 
 
 
 
 
 
 
 
44ba3bc
b92ceeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8b6e3c
 
44ba3bc
 
cd7275a
 
 
7067377
cd7275a
 
44ba3bc
 
 
 
53e8363
 
ec7de9d
44ba3bc
7067377
44ba3bc
 
ec7de9d
44ba3bc
 
 
 
 
 
 
7067377
44ba3bc
 
 
 
 
 
 
 
 
 
99dd69e
 
44ba3bc
99dd69e
 
 
 
 
 
 
 
44ba3bc
99dd69e
 
44ba3bc
99dd69e
 
44ba3bc
 
 
 
 
 
 
 
 
b92ceeb
d8b6e3c
b92ceeb
44ba3bc
 
b92ceeb
44ba3bc
 
 
d8b6e3c
44ba3bc
 
 
 
38d4825
 
44ba3bc
b92ceeb
44ba3bc
 
b92ceeb
44ba3bc
 
b92ceeb
44ba3bc
 
 
 
 
 
 
 
 
b92ceeb
cd7275a
 
 
 
 
d8b6e3c
 
cd7275a
d8b6e3c
eea6e8b
38d4825
 
 
eef2ace
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
library_name: transformers
tags:
- torchao
- phi
- phi4
- nlp
- code
- math
- chat
- conversational
license: mit
language:
- multilingual
base_model:
- microsoft/Phi-4-mini-instruct
pipeline_tag: text-generation
---

# Quantization Recipe

First need to install the required packages:
```
pip install git+https://github.com/huggingface/transformers@main
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
```

We used following code to get the quantized model:

```
from transformers import (
  AutoModelForCausalLM,
  AutoProcessor,
  AutoTokenizer,
  TorchAoConfig,
)
from torchao.quantization.quant_api import (
    IntxWeightOnlyConfig,
    Int8DynamicActivationIntxWeightConfig,
    AOPerModuleConfig,
    quantize_,
)
from torchao.quantization.granularity import PerGroup, PerAxis
import torch

model_id = "microsoft/Phi-4-mini-instruct"

embedding_config = IntxWeightOnlyConfig(
    weight_dtype=torch.int8,
    granularity=PerAxis(0),
)
linear_config = Int8DynamicActivationIntxWeightConfig(
    weight_dtype=torch.int4,
    weight_granularity=PerGroup(32),
    weight_scale_dtype=torch.bfloat16,
)
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)

# TODO: use AOPerModuleConfig once fix for tied weights is landed 
quantize_(
    quantized_model,
    embedding_config,
    lambda m, fqn: isinstance(m, torch.nn.Embedding) 
)
quantize_(
    quantized_model,
    linear_config,
)

# Push to hub
# USER_ID = "YOUR_USER_ID"
# save_to = f"{USER_ID}/phi4-mini-8dq4w"
# quantized_model.push_to_hub(save_to, safe_serialization=False)
# tokenizer.push_to_hub(save_to)

# Manual testing
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
    {
        "role": "system",
        "content": "",
    },
    {"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
    templated_prompt,
    return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])


# Save to disk
state_dict = quantized_model.state_dict()
torch.save(state_dict, "phi4-mini-8dq4w.bin")

```

The response from the manual testing is:

```
Hello! As an AI, I don't have consciousness in the way humans do, but I am fully operational and here to assist you. How can I help you today?
```

# Model Quality

We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.

Need to install lm-eval from source: https://github.com/EleutherAI/lm-evaluation-harness#install

## baseline
```
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 64
```

## 8dq4w
```
import lm_eval
from lm_eval import evaluator
from lm_eval.utils import (
    make_table,
)

lm_eval_model = lm_eval.models.huggingface.HFLM(pretrained=quantized_model, batch_size=64)
results = evaluator.simple_evaluate(
    lm_eval_model, tasks=["hellaswag"], device="cuda:0", batch_size="auto"
)
print(make_table(results))
```

| Benchmark                        |             |                   |
|----------------------------------|-------------|-------------------|
|                                  | Phi-4 mini-Ins | phi4-mini-8dq4w | 
| **Popular aggregated benchmark** |             |                   |
| mmlu                             | 66.73        | 63.11              |
| mmlu_pro                         | 44.71        | 35.31              |
| **Reasoning**                    |             |                   |
| arc_challenge                    | TODO        | TODO              |
| gpqa                             | TODO        | TODO              |
| hellaswag                        | 54.57        | 53.24              |
| openbookqa                       | TODO        | TODO              |
| piqa                             | TODO        | TODO              |
| siqa                             | TODO        | TODO              |
| truthfulqa                        | TODO        | TODO             |
| winogrande                       | TODO        | TODO              |
| **Multilingual**                 |             |                   |
| Mgsm                             | TODO        | TODO              |
| mgsm_cot_native                  | TODO        | TODO              |
| **Math**                         |             |                   |
| gsm8k                            | TODO        | TODO              |
| Mathqa                           | TODO        | TODO              |
| **Overall**                      | **TODO**    | **TODO**          |


# Exporting to ExecuTorch

Exporting to ExecuTorch requires you clone and install [ExecuTorch](https://github.com/pytorch/executorch).


## Convert quantized checkpoint to ExecuTorch's format
```
python -m executorch.examples.models.phi_4_mini.convert_weights phi4-mini-8dq4w.bin phi4-mini-8dq4w-converted.bin
```

## Export to an ExecuTorch *.pte with XNNPACK
```
PARAMS="executorch/examples/models/phi_4_mini/config.json"
python -m executorch.examples.models.llama.export_llama \
  --model "phi_4_mini" \
  --checkpoint "phi4-mini-8dq4w-converted.bin" \
  --params "$PARAMS" \
  -kv \
  --use_sdpa_with_kv_cache \
  -X \
  --xnnpack-extended-ops \
  --metadata '{"get_bos_id":199999, "get_eos_ids":[200020,199999]}' \
  --output_name="phi4-mini-8dq4w.pte"
```
  
## Run model with pybindings
```
export TOKENIZER="/path/to/tokenizer.json"
export TOKENIZER_CONFIG="/path/to/tokenizer_config.json"
export PROMPT="<|system|><|end|><|user|>Hey, are you conscious? Can you talk to me?<|end|><|assistant|>"
python -m executorch.examples.models.llama.runner.native \
  --model phi_4_mini \
  --pte phi4-mini-8dq4w.pte \
  -kv \
  --tokenizer ${TOKENIZER} \
  --tokenizer_config ${TOKENIZER_CONFIG} \
  --prompt "${PROMPT}" \
  --params "${PARAMS}" \
  --max_len 128 \
  --temperature 0
```

The output is:

```
Hello! I am Phi, an AI developed by Microsoft. I am not conscious in the way humans are, but I am here to help and converse with you. How can I assist you today?Hello! I am Phi, an AI developed by Microsoft. I am not conscious in the way humans are, but I am here to help and converse with you. How can I assist you today?Hello! I am Phi, an AI developed by Microsoft. I am not conscious in the way humans are, but I am here to
```

Note: the runner does not currently recongize the stop token from Phi 4 Mini, so it generates text beyond when it should stop.

## Running in a mobile app
The model can be run in a mobile app.  See [instructions](https://pytorch.org/executorch/main/llm/llama-demo-ios.html) for doing this on iOS.
TODO: add perf numbers, memory numbers, and screenshot from app

# Disclaimer
PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.

Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.