Update README.md
Browse files
README.md
CHANGED
@@ -66,9 +66,22 @@ print("tied weights:", find_tied_parameters(untied_model))
|
|
66 |
USER_ID = "YOUR_USER_ID"
|
67 |
MODEL_NAME = model_id.split("/")[-1]
|
68 |
save_to = f"{USER_ID}/{MODEL_NAME}-untied-weights"
|
|
|
69 |
untied_model.push_to_hub(save_to)
|
70 |
tokenizer.push_to_hub(save_to)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
```
|
|
|
72 |
|
73 |
## Quantization
|
74 |
|
@@ -95,6 +108,7 @@ model_id = "microsoft/Phi-4-mini-instruct"
|
|
95 |
USER_ID = "YOUR_USER_ID"
|
96 |
MODEL_NAME = model_id.split("/")[-1]
|
97 |
untied_model_id = f"{USER_ID}/{MODEL_NAME}-untied-weights"
|
|
|
98 |
|
99 |
embedding_config = IntxWeightOnlyConfig(
|
100 |
weight_dtype=torch.int8,
|
@@ -108,6 +122,7 @@ linear_config = Int8DynamicActivationIntxWeightConfig(
|
|
108 |
quant_config = AOPerModuleConfig({"_default": linear_config, "model.embed_tokens": embedding_config})
|
109 |
quantization_config = TorchAoConfig(quant_type=quant_config, include_embedding=True, untie_embedding_weights=True, modules_to_not_convert=[])
|
110 |
|
|
|
111 |
quantized_model = AutoModelForCausalLM.from_pretrained(untied_model_id, torch_dtype=torch.float32, device_map="auto", quantization_config=quantization_config)
|
112 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
113 |
|
|
|
66 |
USER_ID = "YOUR_USER_ID"
|
67 |
MODEL_NAME = model_id.split("/")[-1]
|
68 |
save_to = f"{USER_ID}/{MODEL_NAME}-untied-weights"
|
69 |
+
|
70 |
untied_model.push_to_hub(save_to)
|
71 |
tokenizer.push_to_hub(save_to)
|
72 |
+
|
73 |
+
# or save locally
|
74 |
+
save_to_local_path = f"{MODEL_NAME}-untied-weights"
|
75 |
+
untied_model.save_pretrained(save_to_local_path)
|
76 |
+
tokenizer.save_pretrained(save_to)
|
77 |
+
```
|
78 |
+
|
79 |
+
Note: to `push_to_hub` you need to run
|
80 |
+
```Shell
|
81 |
+
pip install -U "huggingface_hub[cli]"
|
82 |
+
huggingface-cli login
|
83 |
```
|
84 |
+
and use a token with write access, from https://huggingface.co/settings/tokens
|
85 |
|
86 |
## Quantization
|
87 |
|
|
|
108 |
USER_ID = "YOUR_USER_ID"
|
109 |
MODEL_NAME = model_id.split("/")[-1]
|
110 |
untied_model_id = f"{USER_ID}/{MODEL_NAME}-untied-weights"
|
111 |
+
untied_model_local_path = f"{MODEL_NAME}-untied-weights"
|
112 |
|
113 |
embedding_config = IntxWeightOnlyConfig(
|
114 |
weight_dtype=torch.int8,
|
|
|
122 |
quant_config = AOPerModuleConfig({"_default": linear_config, "model.embed_tokens": embedding_config})
|
123 |
quantization_config = TorchAoConfig(quant_type=quant_config, include_embedding=True, untie_embedding_weights=True, modules_to_not_convert=[])
|
124 |
|
125 |
+
# either use `untied_model_id` or `untied_model_local_path`
|
126 |
quantized_model = AutoModelForCausalLM.from_pretrained(untied_model_id, torch_dtype=torch.float32, device_map="auto", quantization_config=quantization_config)
|
127 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
128 |
|