Update README.md
Browse files
README.md
CHANGED
@@ -33,18 +33,11 @@ from transformers import (
|
|
33 |
AutoModelForCausalLM,
|
34 |
AutoProcessor,
|
35 |
AutoTokenizer,
|
36 |
-
TorchAoConfig,
|
37 |
-
)
|
38 |
-
from torchao.quantization.quant_api import (
|
39 |
-
IntxWeightOnlyConfig,
|
40 |
-
Int8DynamicActivationIntxWeightConfig,
|
41 |
-
AOPerModuleConfig
|
42 |
)
|
43 |
-
from torchao.quantization.granularity import PerGroup, PerAxis
|
44 |
import torch
|
45 |
|
46 |
model_id = "microsoft/Phi-4-mini-instruct"
|
47 |
-
untied_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=
|
48 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
49 |
|
50 |
print(untied_model)
|
@@ -54,7 +47,7 @@ if getattr(untied_model.config.get_text_config(decoder=True), "tie_word_embeddin
|
|
54 |
setattr(untied_model.config.get_text_config(decoder=True), "tie_word_embeddings", False)
|
55 |
|
56 |
untied_model._tied_weights_keys = []
|
57 |
-
untied_model.lm_head.weight = torch.nn.Parameter(
|
58 |
|
59 |
print("tied weights:", find_tied_parameters(untied_model))
|
60 |
|
@@ -91,7 +84,6 @@ USER_ID = "YOUR_USER_ID"
|
|
91 |
MODEL_NAME = model_id.split("/")[-1]
|
92 |
untied_model_id = f"{USER_ID}/{MODEL_NAME}-untied-weights"
|
93 |
|
94 |
-
|
95 |
embedding_config = IntxWeightOnlyConfig(
|
96 |
weight_dtype=torch.int8,
|
97 |
granularity=PerAxis(0),
|
@@ -101,7 +93,11 @@ linear_config = Int8DynamicActivationIntxWeightConfig(
|
|
101 |
weight_granularity=PerGroup(32),
|
102 |
weight_scale_dtype=torch.bfloat16,
|
103 |
)
|
104 |
-
|
|
|
|
|
|
|
|
|
105 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
106 |
|
107 |
# TODO: use AOPerModuleConfig once fix for tied weights is landed
|
|
|
33 |
AutoModelForCausalLM,
|
34 |
AutoProcessor,
|
35 |
AutoTokenizer,
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
)
|
|
|
37 |
import torch
|
38 |
|
39 |
model_id = "microsoft/Phi-4-mini-instruct"
|
40 |
+
untied_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
|
41 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
42 |
|
43 |
print(untied_model)
|
|
|
47 |
setattr(untied_model.config.get_text_config(decoder=True), "tie_word_embeddings", False)
|
48 |
|
49 |
untied_model._tied_weights_keys = []
|
50 |
+
untied_model.lm_head.weight = torch.nn.Parameter(untied_model.lm_head.weight.clone())
|
51 |
|
52 |
print("tied weights:", find_tied_parameters(untied_model))
|
53 |
|
|
|
84 |
MODEL_NAME = model_id.split("/")[-1]
|
85 |
untied_model_id = f"{USER_ID}/{MODEL_NAME}-untied-weights"
|
86 |
|
|
|
87 |
embedding_config = IntxWeightOnlyConfig(
|
88 |
weight_dtype=torch.int8,
|
89 |
granularity=PerAxis(0),
|
|
|
93 |
weight_granularity=PerGroup(32),
|
94 |
weight_scale_dtype=torch.bfloat16,
|
95 |
)
|
96 |
+
|
97 |
+
quant_config = AOPerModuleConfig({"_default": linear_config, "model.embed_tokens": embedding_config})
|
98 |
+
quantization_config = TorchAoConfig(quant_type=quant_config, include_embedding=True, untie_embedding_weights=True, modules_to_not_convert=[])
|
99 |
+
|
100 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(untied_model_id, torch_dtype=torch.float32, device_map="auto", quantization_config=quantization_config)
|
101 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
102 |
|
103 |
# TODO: use AOPerModuleConfig once fix for tied weights is landed
|