File size: 13,005 Bytes
11ca438
 
f38ad3d
 
939c0b0
 
 
 
 
 
 
f38ad3d
939c0b0
 
627b9e9
 
939c0b0
11ca438
 
cdb7a31
a7bb628
7d5e958
72633cf
7d5e958
 
 
 
 
c6246f9
7d5e958
 
12562be
 
 
 
 
 
7d5e958
12562be
 
7d5e958
 
12562be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d5e958
 
aacfd05
a29a768
 
926d6d3
 
c6246f9
e45d601
926d6d3
 
7d5e958
 
 
c6246f9
7d5e958
 
 
 
 
 
 
c6246f9
7d5e958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49ef0db
 
 
cdb7a31
49ef0db
c6246f9
d85376f
fa9082a
e60e06a
 
fa9082a
800c265
cdb7a31
a7bb628
c6246f9
a7bb628
 
 
 
 
 
 
 
960296e
39b90e8
a7bb628
 
 
265080b
 
a7bb628
39b90e8
a7bb628
 
 
a204b4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7bb628
 
 
 
a204b4f
49ef0db
a7bb628
15b493e
 
 
 
 
 
 
a7bb628
 
531cbdd
 
 
a7bb628
be21cdb
c6246f9
a7bb628
 
 
a2ac3b7
c6246f9
bf1e484
a7bb628
 
f961b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b3ab58
f950d65
 
 
 
 
 
 
 
c8fa94e
f950d65
 
 
 
cdb7a31
 
 
c6246f9
f950d65
 
 
 
10f0d7a
f950d65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7bb628
 
69fb0e9
8355945
 
 
 
 
 
 
69fb0e9
ae4c6ae
 
3d272da
626861a
c6246f9
626861a
 
 
c5c9bdf
 
 
 
 
3d272da
 
 
36880bf
d682ce6
c6246f9
a7bb628
 
 
d682ce6
c6246f9
f05c88f
a7bb628
 
d682ce6
a7bb628
3d272da
a7bb628
2bea06d
 
 
 
 
 
626861a
b75ca55
 
d682ce6
a7bb628
c6246f9
a7bb628
 
 
 
c6246f9
a7bb628
 
 
d682ce6
a7bb628
c6246f9
c4f1dfd
a7bb628
 
 
c6246f9
7047f70
a643216
 
16f4572
 
a643216
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
---
library_name: transformers
tags:
- torchao
- phi
- phi4
- nlp
- code
- math
- chat
- conversational
license: mit
language:
- multilingual
base_model:
- microsoft/Phi-4-mini-instruct
pipeline_tag: text-generation
---

[Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team. Use it directly, or serve using [vLLM](https://docs.vllm.ai/en/latest/) with 36% VRAM reduction, 15-20% speedup and little to no accuracy impact on H100.

# Inference with vLLM
Install vllm nightly to get some recent changes:
```
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
```

## Code Example
```Py
from vllm import LLM, SamplingParams

# Sample prompts.
prompts = [
    "Hello, my name is",
    "The president of the United States is",
    "The capital of France is",
    "The future of AI is",
]
# Create a sampling params object.
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)


if __name__ == '__main__':
    # Create an LLM.
    llm = LLM(model="pytorch/Phi-4-mini-instruct-float8dq")
    # Generate texts from the prompts.
    # The output is a list of RequestOutput objects
    # that contain the prompt, generated text, and other information.
    outputs = llm.generate(prompts, sampling_params)
    # Print the outputs.
    print("\nGenerated Outputs:\n" + "-" * 60)
    for output in outputs:
        prompt = output.prompt
        generated_text = output.outputs[0].text
        print(f"Prompt:    {prompt!r}")
        print(f"Output:    {generated_text!r}")
        print("-" * 60)
```

Note: please use `VLLM_DISABLE_COMPILE_CACHE=1` to disable compile cache when running this code, e.g. `VLLM_DISABLE_COMPILE_CACHE=1 python example.py`, since there are some issues with the composability of compile in vLLM and torchao,
this is expected be resolved in pytorch 2.8.

## Serving
Then we can serve with the following command:
```Shell
vllm serve pytorch/Phi-4-mini-instruct-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
```

# Inference with Transformers

Install the required packages:
```Shell
pip install git+https://github.com/huggingface/transformers@main
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
pip install torch
pip install accelerate
```

Example:
```Py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
torch.random.manual_seed(0)

model_path = "pytorch/Phi-4-mini-instruct-float8dq"

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="auto",
    torch_dtype="auto",
    trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
 
messages = [
    {"role": "system", "content": "You are a helpful AI assistant."},
    {"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"},
    {"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."},
    {"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"},
]
 
pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
)
 
generation_args = {
    "max_new_tokens": 500,
    "return_full_text": False,
    "temperature": 0.0,
    "do_sample": False,
}
 
output = pipe(messages, **generation_args)
print(output[0]['generated_text'])
```

# Quantization Recipe

Install the required packages:

```Shell
pip install git+https://github.com/huggingface/transformers@main
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
pip install torch
pip install accelerate
```

Use the following code to get the quantized model:

```Py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig

model_id = "microsoft/Phi-4-mini-instruct"

from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow
quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow())
quantization_config = TorchAoConfig(quant_type=quant_config)
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Push to hub
USER_ID = "YOUR_USER_ID"
MODEL_NAME = model_id.split("/")[-1]
save_to = f"{USER_ID}/{MODEL_NAME}-float8dq"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)

# Manual Testing
prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
    {
        "role": "system",
        "content": "",
    },
    {"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
    templated_prompt,
    return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])
```

Note: to `push_to_hub` you need to run
```Shell
pip install -U "huggingface_hub[cli]"
huggingface-cli login
```
and use a token with write access, from https://huggingface.co/settings/tokens

# Model Quality
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
Need to install lm-eval from source:
https://github.com/EleutherAI/lm-evaluation-harness#install


## baseline
```Shell
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8
```

## float8 dynamic activation and float8 weight quantization (float8dq)
```Shell
lm_eval --model hf --model_args pretrained=pytorch/Phi-4-mini-instruct-float8dq --tasks hellaswag --device cuda:0 --batch_size 8
```

| Benchmark                        |                |                               |
|----------------------------------|----------------|-------------------------------|
|                                  | Phi-4-mini-ins | Phi-4-mini-instruct-float8dq  | 
| **Popular aggregated benchmark** |                |                               |
| mmlu (0-shot)                    | 66.73          |  66.61                        |
| mmlu_pro (5-shot)                | 46.43          |  44.58                        |
| **Reasoning**                    |                |                               |
| arc_challenge (0-shot)           | 56.91          |  56.66                        |
| gpqa_main_zeroshot               | 30.13          |  29.46                        |
| HellaSwag                        | 54.57          |  54.55                        |
| openbookqa                       | 33.00          |  33.60                        |
| piqa (0-shot)	                   | 77.64          |  77.48                        |
| social_iqa                       | 49.59          |  49.28                        |
| truthfulqa_mc2 (0-shot)          | 48.39          |  48.09                        |
| winogrande  (0-shot)             | 71.11          |  72.77                        |
| **Multilingual**                 |                |                               |
| mgsm_en_cot_en                   | 60.8           |  60.0                         |
| **Math**                         |                |                               |
| gsm8k (5-shot)                   | 81.88          |  80.89                        |
| mathqa (0-shot)                  | 42.31          |  42.51                        |
| **Overall**                      | **55.35**       | **55.11**                    |

# Peak Memory Usage


## Results

| Benchmark        |                |                                |
|------------------|----------------|--------------------------------|
|                  | Phi-4 mini-Ins | Phi-4-mini-instruct-float8dq   | 
| Peak Memory (GB) | 8.91           | 5.70 (36% reduction)           |


## Benchmark Peak Memory

We can use the following code to get a sense of peak memory usage during inference:


```Py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig

# use "microsoft/Phi-4-mini-instruct" or "pytorch/Phi-4-mini-instruct-float8dq"
model_id = "pytorch/Phi-4-mini-instruct-float8dq"
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)

torch.cuda.reset_peak_memory_stats()

prompt = "Hey, are you conscious? Can you talk to me?"
messages = [
    {
        "role": "system",
        "content": "",
    },
    {"role": "user", "content": prompt},
]
templated_prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True,
)
print("Prompt:", prompt)
print("Templated prompt:", templated_prompt)
inputs = tokenizer(
    templated_prompt,
    return_tensors="pt",
).to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print("Response:", output_text[0][len(prompt):])

mem = torch.cuda.max_memory_reserved() / 1e9
print(f"Peak Memory Usage: {mem:.02f} GB")
```

# Model Performance

## Results (H100 machine)
| Benchmark                        |                |                               |
|----------------------------------|----------------|-------------------------------|
|                                  | Phi-4 mini-Ins | Phi-4-mini-instruct-float8dq  | 
| latency (batch_size=1)           | 1.64s          | 1.41s (16% speedup)           |
| latency (batch_size=128)         | 3.1s           | 2.72s (14% speedup)           |
| serving (num_prompts=1)          | 1.35 req/s     | 1.57 req/s (16% speedup)      |
| serving (num_prompts=1000)       | 66.68 req/s    | 80.53 req/s (21% speedup)     |

Note the result of latency (benchmark_latency) is in seconds, and serving (benchmark_serving) is in number of requests per second.

## Setup
Get vllm source code:
```Shell
git clone [email protected]:vllm-project/vllm.git
```

Install vllm
```
VLLM_USE_PRECOMPILED=1 pip install --editable .
```

Run the benchmarks under `vllm` root folder:

## benchmark_latency

### baseline
```Shell
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1
```

### float8dq
```Shell
VLLM_DISABLE_COMPILE_CACHE=1 python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model pytorch/Phi-4-mini-instruct-float8dq --batch-size 1
```

## benchmark_serving

We benchmarked the throughput in a serving environment.

Download sharegpt dataset:

```Shell
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
```

Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks

Note: you can change the number of prompts to be benchmarked with `--num-prompts` argument for `benchmark_serving` script.
### baseline
Server:
```Shell
vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3
```

Client:
```Shell
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1
```

### float8dq
Server:
```Shell
VLLM_DISABLE_COMPILE_CACHE=1 vllm serve pytorch/Phi-4-mini-instruct-float8dq --tokenizer microsoft/Phi-4-mini-instruct -O3
```

Client:
```Shell
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model pytorch/Phi-4-mini-instruct-float8dq --num-prompts 1
```



# Disclaimer
PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.

Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.