File size: 5,694 Bytes
19c2556
 
8ecebaf
 
 
19c2556
 
8d76f91
 
b9c2cf5
 
 
 
99442e3
 
b9c2cf5
 
8d76f91
 
 
 
 
 
 
 
 
 
 
 
 
90e6cd4
8d76f91
 
 
9e5aae3
8d76f91
90e6cd4
8d76f91
 
 
 
 
 
 
 
 
 
0882b28
8d76f91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4989b4d
8d76f91
 
e38437b
3737ba9
e38437b
8d76f91
e38437b
8d76f91
3737ba9
e38437b
8d76f91
e38437b
8d76f91
3737ba9
e38437b
8d76f91
 
 
 
 
e38437b
 
8d76f91
 
 
 
 
 
 
 
 
 
 
 
 
 
3737ba9
e38437b
52e01da
 
e38437b
8d76f91
3737ba9
e38437b
8d76f91
 
3737ba9
52e01da
0e7b2e9
52e01da
3737ba9
8d76f91
 
 
 
3737ba9
8d76f91
 
 
 
3737ba9
8d76f91
4989b4d
8d76f91
52e01da
 
 
3737ba9
8d76f91
 
 
 
 
 
 
 
 
 
3737ba9
8d76f91
 
 
 
 
 
 
 
 
 
 
 
 
 
8ecebaf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
---
library_name: transformers
tags:
- torchao
license: mit
---

[Phi4-mini](https://huggingface.co/microsoft/Phi-4-mini-instruct) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) int4 weight only quantization, by PyTorch team.

# Installation
```
pip install transformers
pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
pip install [email protected]:EleutherAI/lm-evaluation-harness.git
pip install vllm --pre --extra-index-url https://wheels.vllm.ai/nightly
```

# Quantization Recipe
We used following code to get the quantized model:

```
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig

model_id = "microsoft/Phi-4-mini-instruct"

from torchao.quantization import Int4WeightOnlyConfig
quant_config = Int4WeightOnlyConfig(group_size=128)
quantization_config = TorchAoConfig(quant_type=quant_config)
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_id)

# Push to hub
USER_ID = "YOUR_USER_ID"
save_to = f"{USER_ID}/{model_id}-int4wo"
quantized_model.push_to_hub(save_to, safe_serialization=False)
tokenizer.push_to_hub(save_to)

# Manual Testing
prompt = "Hey, are you conscious? Can you talk to me?"
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
output_text = tokenizer.batch_decode(
    generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
print(output_text)

# Local Benchmark
import torch.utils.benchmark as benchmark
from torchao.utils import benchmark_model
import torchao

def benchmark_fn(f, *args, **kwargs):
    # Manual warmup
    for _ in range(2):
        f(*args, **kwargs)

    t0 = benchmark.Timer(
        stmt="f(*args, **kwargs)",
        globals={"args": args, "kwargs": kwargs, "f": f},
        num_threads=torch.get_num_threads(),
    )
    return f"{(t0.blocked_autorange().mean):.3f}"

torchao.quantization.utils.recommended_inductor_config_setter()
quantized_model = torch.compile(quantized_model, mode="max-autotune")
print(f"{save_to} model:", benchmark_fn(quantized_model.generate, **inputs, max_new_tokens=128))
```
# Model Quality
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.

## Installing the nightly version to get most recent updates
```
pip install git+https://github.com/EleutherAI/lm-evaluation-harness
```

## baseline
```
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8
```

## int4wo-hqq
```
lm_eval --model hf --model_args pretrained=jerryzh168/phi4-mini-int4wo-hqq --tasks hellaswag --device cuda:0 --batch_size 8
```

`TODO: more complete eval results`


| Benchmark                        |             |                   |
|----------------------------------|-------------|-------------------|
|                                  | Phi-4 mini-Ins | phi4-mini-int4wo | 
| **Popular aggregated benchmark** |             |                   |
| **Reasoning**                    |             |                   |
| HellaSwag                        | 54.57        | 53.54            |
| **Multilingual**                 |             |                   |
| **Math**                         |             |                   |
| **Overall**                      | **TODO**    | **TODO**          |
 
# Model Performance

Our int4wo is only optimized for batch size 1, so we'll only benchmark the batch size 1 performance with vllm.
For batch size N, please see our [gemlite checkpoint](https://huggingface.co/jerryzh168/phi4-mini-int4wo-gemlite).

## Download vllm source code and install vllm
```
git clone [email protected]:vllm-project/vllm.git
VLLM_USE_PRECOMPILED=1 pip install .
```

## Download dataset
Download sharegpt dataset: `wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json`

Other datasets can be found in: https://github.com/vllm-project/vllm/tree/main/benchmarks
## benchmark_latency

Run the following under `vllm` source code root folder:

### baseline
```
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model microsoft/Phi-4-mini-instruct --batch-size 1
```

### int4wo-hqq
```
python benchmarks/benchmark_latency.py --input-len 256 --output-len 256 --model jerryzh168/phi4-mini-int4wo-hqq --batch-size 1
```

## benchmark_serving

We also benchmarked the throughput in a serving environment.


Run the following under `vllm` source code root folder:

### baseline
Server:
```
vllm serve microsoft/Phi-4-mini-instruct --tokenizer microsoft/Phi-4-mini-instruct -O3
```

Client:
```
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model microsoft/Phi-4-mini-instruct --num-prompts 1
```

### int4wo-hqq
Server:
```
vllm serve jerryzh168/phi4-mini-int4wo-hqq --tokenizer microsoft/Phi-4-mini-instruct -O3
```

Client:
```
python benchmarks/benchmark_serving.py --backend vllm --dataset-name sharegpt --tokenizer microsoft/Phi-4-mini-instruct --dataset-path ./ShareGPT_V3_unfiltered_cleaned_split.json --model jerryzh168/phi4-mini-int4wo-hqq --num-prompts 1
```

# Serving with vllm
We can use the same command we used in serving benchmarks to serve the model with vllm
```
vllm serve jerryzh168/phi4-mini-int4wo-hqq --tokenizer microsoft/Phi-4-mini-instruct -O3
```