SocialLocalMobile commited on
Commit
9e5aed4
·
verified ·
1 Parent(s): 1f96ea2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +68 -174
README.md CHANGED
@@ -1,199 +1,93 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
 
 
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
 
 
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
 
 
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
35
 
36
- ## Uses
 
 
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
39
 
40
- ### Direct Use
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
 
 
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
 
49
 
50
- [More Information Needed]
51
 
52
- ### Out-of-Scope Use
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - torchao
5
+ license: apache-2.0
6
+ language:
7
+ - multilingual
8
+ base_model:
9
+ - Qwen/Qwen3-32B
10
+ pipeline_tag: text-generation
11
  ---
12
 
13
+ [Qwen3-32B](https://huggingface.co/Qwen3/Qwen3-32B) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team. Use it directly, or serve using [vLLM](https://docs.vllm.ai/en/latest/) with TODO VRAM reduction, TODO speedup and little to no accuracy impact on H100.
14
 
15
+ # Inference with vLLM
16
+ TODO
17
 
18
+ # Inference with Transformers
19
+ TODO
20
 
21
+ # Quantization Recipe
22
 
23
+ Install the required packages:
24
 
25
+ ```Shell
26
+ pip install git+https://github.com/huggingface/transformers@main
27
+ pip install --pre torchao --index-url https://download.pytorch.org/whl/nightly/cu126
28
+ pip install torch
29
+ pip install accelerate
30
+ ```
31
 
32
+ Use the following code to get the quantized model:
33
 
34
+ ```Py
35
+ import torch
36
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
37
 
38
+ model_id = "Qwen/Qwen3-32B"
 
 
 
 
 
 
39
 
40
+ from torchao.quantization import Float8DynamicActivationFloat8WeightConfig, PerRow
41
+ quant_config = Float8DynamicActivationFloat8WeightConfig(granularity=PerRow())
42
+ quantization_config = TorchAoConfig(quant_type=quant_config)
43
+ quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config)
44
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
45
 
 
46
 
47
+ prompt = "Give me a short introduction to large language model."
48
+ messages = [
49
+ {"role": "user", "content": prompt}
50
+ ]
51
+ text = tokenizer.apply_chat_template(
52
+ messages,
53
+ tokenize=False,
54
+ add_generation_prompt=True,
55
+ enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
56
+ )
57
+ model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
58
 
59
+ # conduct text completion
60
+ generated_ids = quantized_model.generate(
61
+ **model_inputs,
62
+ max_new_tokens=32768
63
+ )
64
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
65
 
66
+ # parsing thinking content
67
+ try:
68
+ # rindex finding 151668 (</think>)
69
+ index = len(output_ids) - output_ids[::-1].index(151668)
70
+ except ValueError:
71
+ index = 0
72
 
73
+ thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
74
+ content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
75
 
76
+ print("thinking content:", thinking_content)
77
+ print("content:", content)
78
+ ```
79
 
80
+ # Model Quality
81
+ TODO
82
 
83
+ # Peak Memory Usage
84
+ TODO
85
 
86
+ # Model Performance
87
+ TODO
88
 
 
89
 
90
+ # Disclaimer
91
+ PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.
92
 
93
+ Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.