Update README.md
Browse files
README.md
CHANGED
@@ -13,7 +13,7 @@ base_model:
|
|
13 |
pipeline_tag: text-generation
|
14 |
---
|
15 |
|
16 |
-
[Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team. Use it directly, or serve using [vLLM](https://docs.vllm.ai/en/latest/) with
|
17 |
|
18 |
# Inference with vLLM
|
19 |
```Shell
|
@@ -113,7 +113,71 @@ tokenizer.push_to_hub(save_to)
|
|
113 |
TODO
|
114 |
|
115 |
# Peak Memory Usage
|
116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
# Model Performance
|
119 |
|
|
|
13 |
pipeline_tag: text-generation
|
14 |
---
|
15 |
|
16 |
+
[Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B) model quantized with [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao) float8 dynamic activation and float8 weight quantization (per row granularity), by PyTorch team. Use it directly, or serve using [vLLM](https://docs.vllm.ai/en/latest/) with 47% VRAM reduction, 32%-36% speedup and little to no accuracy impact on H100.
|
17 |
|
18 |
# Inference with vLLM
|
19 |
```Shell
|
|
|
113 |
TODO
|
114 |
|
115 |
# Peak Memory Usage
|
116 |
+
|
117 |
+
| | | |
|
118 |
+
|----------------------------------|----------------|-------------------------------|
|
119 |
+
| | Qwen3-32B | Qwen3-32B-float8dq |
|
120 |
+
| Peak Memory | 65.72 GB | 34.54 GB (-47.44%) |
|
121 |
+
|
122 |
+
<details>
|
123 |
+
<summary> Reproduce peak memory usage </summary>
|
124 |
+
|
125 |
+
Code
|
126 |
+
```Py
|
127 |
+
import torch
|
128 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
129 |
+
|
130 |
+
model_name = "Qwen/Qwen3-32B" # pytorch/Qwen3-32B-float8dq
|
131 |
+
|
132 |
+
# load the tokenizer and the model
|
133 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
134 |
+
model = AutoModelForCausalLM.from_pretrained(
|
135 |
+
model_name,
|
136 |
+
torch_dtype="auto",
|
137 |
+
device_map="auto"
|
138 |
+
)
|
139 |
+
|
140 |
+
torch.cuda.reset_peak_memory_stats()
|
141 |
+
|
142 |
+
# prepare the model input
|
143 |
+
prompt = "Give me a short introduction to large language model."
|
144 |
+
messages = [
|
145 |
+
{"role": "user", "content": prompt}
|
146 |
+
]
|
147 |
+
text = tokenizer.apply_chat_template(
|
148 |
+
messages,
|
149 |
+
tokenize=False,
|
150 |
+
add_generation_prompt=True,
|
151 |
+
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
|
152 |
+
)
|
153 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
154 |
+
|
155 |
+
# conduct text completion
|
156 |
+
generated_ids = model.generate(
|
157 |
+
**model_inputs,
|
158 |
+
max_new_tokens=32768
|
159 |
+
)
|
160 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
161 |
+
|
162 |
+
# parsing thinking content
|
163 |
+
try:
|
164 |
+
# rindex finding 151668 (</think>)
|
165 |
+
index = len(output_ids) - output_ids[::-1].index(151668)
|
166 |
+
except ValueError:
|
167 |
+
index = 0
|
168 |
+
|
169 |
+
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
|
170 |
+
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
171 |
+
|
172 |
+
print("thinking content:", thinking_content)
|
173 |
+
print("content:", content)
|
174 |
+
|
175 |
+
|
176 |
+
mem = torch.cuda.max_memory_reserved() / 1e9
|
177 |
+
print(f"Peak Memory Usage: {mem:.02f} GB")
|
178 |
+
```
|
179 |
+
</details>
|
180 |
+
|
181 |
|
182 |
# Model Performance
|
183 |
|