update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- image-segmentation
|
6 |
+
- generated_from_trainer
|
7 |
+
model-index:
|
8 |
+
- name: segformer-b0-finetuned-brooks-or-dunn
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# segformer-b0-finetuned-brooks-or-dunn
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the q2-jlbar/BrooksOrDunn dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.1158
|
20 |
+
- Mean Iou: nan
|
21 |
+
- Mean Accuracy: nan
|
22 |
+
- Overall Accuracy: nan
|
23 |
+
- Per Category Iou: [nan, nan]
|
24 |
+
- Per Category Accuracy: [nan, nan]
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 6e-05
|
44 |
+
- train_batch_size: 2
|
45 |
+
- eval_batch_size: 2
|
46 |
+
- seed: 42
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: linear
|
49 |
+
- num_epochs: 50
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:---------------------:|
|
55 |
+
| 0.5153 | 4.0 | 20 | 0.5276 | nan | nan | nan | [nan, nan] | [nan, nan] |
|
56 |
+
| 0.4082 | 8.0 | 40 | 0.3333 | nan | nan | nan | [nan, nan] | [nan, nan] |
|
57 |
+
| 0.3157 | 12.0 | 60 | 0.2773 | nan | nan | nan | [nan, nan] | [nan, nan] |
|
58 |
+
| 0.2911 | 16.0 | 80 | 0.2389 | nan | nan | nan | [nan, nan] | [nan, nan] |
|
59 |
+
| 0.2395 | 20.0 | 100 | 0.1982 | nan | nan | nan | [nan, nan] | [nan, nan] |
|
60 |
+
| 0.2284 | 24.0 | 120 | 0.1745 | nan | nan | nan | [nan, nan] | [nan, nan] |
|
61 |
+
| 0.1818 | 28.0 | 140 | 0.1595 | nan | nan | nan | [nan, nan] | [nan, nan] |
|
62 |
+
| 0.1549 | 32.0 | 160 | 0.1556 | nan | nan | nan | [nan, nan] | [nan, nan] |
|
63 |
+
| 0.1351 | 36.0 | 180 | 0.1387 | nan | nan | nan | [nan, nan] | [nan, nan] |
|
64 |
+
| 0.1254 | 40.0 | 200 | 0.1263 | nan | nan | nan | [nan, nan] | [nan, nan] |
|
65 |
+
| 0.1412 | 44.0 | 220 | 0.1190 | nan | nan | nan | [nan, nan] | [nan, nan] |
|
66 |
+
| 0.1179 | 48.0 | 240 | 0.1158 | nan | nan | nan | [nan, nan] | [nan, nan] |
|
67 |
+
|
68 |
+
|
69 |
+
### Framework versions
|
70 |
+
|
71 |
+
- Transformers 4.19.2
|
72 |
+
- Pytorch 1.11.0
|
73 |
+
- Datasets 2.2.2
|
74 |
+
- Tokenizers 0.12.1
|