q2-jlbar commited on
Commit
d7017bb
·
1 Parent(s): 161165e

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - vision
5
+ - image-segmentation
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: segformer-b0-finetuned-brooks-or-dunn
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # segformer-b0-finetuned-brooks-or-dunn
16
+
17
+ This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the q2-jlbar/BrooksOrDunn dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1158
20
+ - Mean Iou: nan
21
+ - Mean Accuracy: nan
22
+ - Overall Accuracy: nan
23
+ - Per Category Iou: [nan, nan]
24
+ - Per Category Accuracy: [nan, nan]
25
+
26
+ ## Model description
27
+
28
+ More information needed
29
+
30
+ ## Intended uses & limitations
31
+
32
+ More information needed
33
+
34
+ ## Training and evaluation data
35
+
36
+ More information needed
37
+
38
+ ## Training procedure
39
+
40
+ ### Training hyperparameters
41
+
42
+ The following hyperparameters were used during training:
43
+ - learning_rate: 6e-05
44
+ - train_batch_size: 2
45
+ - eval_batch_size: 2
46
+ - seed: 42
47
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
48
+ - lr_scheduler_type: linear
49
+ - num_epochs: 50
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:---------------------:|
55
+ | 0.5153 | 4.0 | 20 | 0.5276 | nan | nan | nan | [nan, nan] | [nan, nan] |
56
+ | 0.4082 | 8.0 | 40 | 0.3333 | nan | nan | nan | [nan, nan] | [nan, nan] |
57
+ | 0.3157 | 12.0 | 60 | 0.2773 | nan | nan | nan | [nan, nan] | [nan, nan] |
58
+ | 0.2911 | 16.0 | 80 | 0.2389 | nan | nan | nan | [nan, nan] | [nan, nan] |
59
+ | 0.2395 | 20.0 | 100 | 0.1982 | nan | nan | nan | [nan, nan] | [nan, nan] |
60
+ | 0.2284 | 24.0 | 120 | 0.1745 | nan | nan | nan | [nan, nan] | [nan, nan] |
61
+ | 0.1818 | 28.0 | 140 | 0.1595 | nan | nan | nan | [nan, nan] | [nan, nan] |
62
+ | 0.1549 | 32.0 | 160 | 0.1556 | nan | nan | nan | [nan, nan] | [nan, nan] |
63
+ | 0.1351 | 36.0 | 180 | 0.1387 | nan | nan | nan | [nan, nan] | [nan, nan] |
64
+ | 0.1254 | 40.0 | 200 | 0.1263 | nan | nan | nan | [nan, nan] | [nan, nan] |
65
+ | 0.1412 | 44.0 | 220 | 0.1190 | nan | nan | nan | [nan, nan] | [nan, nan] |
66
+ | 0.1179 | 48.0 | 240 | 0.1158 | nan | nan | nan | [nan, nan] | [nan, nan] |
67
+
68
+
69
+ ### Framework versions
70
+
71
+ - Transformers 4.19.2
72
+ - Pytorch 1.11.0
73
+ - Datasets 2.2.2
74
+ - Tokenizers 0.12.1