File size: 7,777 Bytes
0769cee b0a8168 8d82603 b0a8168 0769cee b0a8168 f45f707 b0a8168 790fd5d b0a8168 790fd5d b0a8168 790fd5d b0a8168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
---
tags:
- Transformers
- Token Classification
- Slot Annotation
- token-classification
- sequence-tagger-model
languages:
- af-ZA
- am-ET
- ar-SA
- az-AZ
- bn-BD
- cy-GB
- da-DK
- de-DE
- el-GR
- en-US
- es-ES
- fa-IR
- fi-FI
- fr-FR
- he-IL
- hi-IN
- hu-HU
- hy-AM
- id-ID
- is-IS
- it-IT
- ja-JP
- jv-ID
- ka-GE
- km-KH
- kn-IN
- ko-KR
- lv-LV
- ml-IN
- mn-MN
- ms-MY
- my-MM
- nb-NO
- nl-NL
- pl-PL
- pt-PT
- ro-RO
- ru-RU
- sl-SL
- sq-AL
- sv-SE
- sw-KE
- ta-IN
- te-IN
- th-TH
- tl-PH
- tr-TR
- ur-PK
- vi-VN
- zh-CN
- zh-TW
multilinguality:
- af-ZA
- am-ET
- ar-SA
- az-AZ
- bn-BD
- cy-GB
- da-DK
- de-DE
- el-GR
- en-US
- es-ES
- fa-IR
- fi-FI
- fr-FR
- he-IL
- hi-IN
- hu-HU
- hy-AM
- id-ID
- is-IS
- it-IT
- ja-JP
- jv-ID
- ka-GE
- km-KH
- kn-IN
- ko-KR
- lv-LV
- ml-IN
- mn-MN
- ms-MY
- my-MM
- nb-NO
- nl-NL
- pl-PL
- pt-PT
- ro-RO
- ru-RU
- sl-SL
- sq-AL
- sv-SE
- sw-KE
- ta-IN
- te-IN
- th-TH
- tl-PH
- tr-TR
- ur-PK
- vi-VN
- zh-CN
- zh-TW
datasets:
- qanastek/MASSIVE
widget:
- text: "wake me up at five am this week"
- text: "je veux écouter la chanson de jacques brel encore une fois"
- text: "quiero escuchar la canción de arijit singh una vez más"
- text: "olly onde é que á um parque por perto onde eu possa correr"
- text: "פרק הבא בפודקאסט בבקשה"
- text: "亚马逊股价"
- text: "найди билет на поезд в санкт-петербург"
license: cc-by-4.0
---
**People Involved**
* [LABRAK Yanis](https://www.linkedin.com/in/yanis-labrak-8a7412145/) (1)
**Affiliations**
1. [LIA, NLP team](https://lia.univ-avignon.fr/), Avignon University, Avignon, France.
## Demo: How to use in HuggingFace Transformers Pipeline
Requires [transformers](https://pypi.org/project/transformers/): ```pip install transformers```
```python
from transformers import AutoTokenizer, AutoModelForTokenClassification, TokenClassificationPipeline
tokenizer = AutoTokenizer.from_pretrained('qanastek/XLMRoberta-Alexa-Intents-NER-NLU')
model = AutoModelForTokenClassification.from_pretrained('qanastek/XLMRoberta-Alexa-Intents-NER-NLU')
predict = TokenClassificationPipeline(model=model, tokenizer=tokenizer)
res = predict("réveille-moi à neuf heures du matin le vendredi")
print(res)
```
Outputs:

```python
[{'word': '▁neuf', 'score': 0.9911066293716431, 'entity': 'B-time', 'index': 6, 'start': 15, 'end': 19},
{'word': '▁heures', 'score': 0.9200698733329773, 'entity': 'I-time', 'index': 7, 'start': 20, 'end': 26},
{'word': '▁du', 'score': 0.8476170897483826, 'entity': 'I-time', 'index': 8, 'start': 27, 'end': 29},
{'word': '▁matin', 'score': 0.8271021246910095, 'entity': 'I-time', 'index': 9, 'start': 30, 'end': 35},
{'word': '▁vendredi', 'score': 0.9813069701194763, 'entity': 'B-date', 'index': 11, 'start': 39, 'end': 47}]
```
## Training data
[MASSIVE](https://huggingface.co/datasets/qanastek/MASSIVE) is a parallel dataset of > 1M utterances across 51 languages with annotations for the Natural Language Understanding tasks of intent prediction and slot annotation. Utterances span 60 intents and include 55 slot types. MASSIVE was created by localizing the SLURP dataset, composed of general Intelligent Voice Assistant single-shot interactions.
## Named Entities
* O
* currency_name
* personal_info
* app_name
* list_name
* alarm_type
* cooking_type
* time_zone
* media_type
* change_amount
* transport_type
* drink_type
* news_topic
* artist_name
* weather_descriptor
* transport_name
* player_setting
* email_folder
* music_album
* coffee_type
* meal_type
* song_name
* date
* movie_type
* movie_name
* game_name
* business_type
* music_descriptor
* joke_type
* music_genre
* device_type
* house_place
* place_name
* sport_type
* podcast_name
* game_type
* timeofday
* business_name
* time
* definition_word
* audiobook_author
* event_name
* general_frequency
* relation
* color_type
* audiobook_name
* food_type
* person
* transport_agency
* email_address
* podcast_descriptor
* order_type
* ingredient
* transport_descriptor
* playlist_name
* radio_name
## Evaluation results
```plain
precision recall f1-score support
O 0.9537 0.9498 0.9517 1031927
alarm_type 0.8214 0.1800 0.2953 511
app_name 0.3448 0.5318 0.4184 660
artist_name 0.7143 0.8487 0.7757 11413
audiobook_author 0.7038 0.2971 0.4178 1232
audiobook_name 0.7271 0.5381 0.6185 5090
business_name 0.8301 0.7862 0.8075 15385
business_type 0.7009 0.6196 0.6577 4600
change_amount 0.8179 0.9104 0.8617 1663
coffee_type 0.6147 0.8322 0.7071 876
color_type 0.6999 0.9176 0.7941 2890
cooking_type 0.7037 0.5184 0.5970 1003
currency_name 0.8479 0.9686 0.9042 6501
date 0.8667 0.9348 0.8995 49866
definition_word 0.9043 0.8135 0.8565 8333
device_type 0.8502 0.8825 0.8661 11631
drink_type 0.0000 0.0000 0.0000 131
email_address 0.9715 0.9747 0.9731 3986
email_folder 0.5913 0.9740 0.7359 884
event_name 0.7659 0.7630 0.7645 38625
food_type 0.6502 0.8697 0.7441 12353
game_name 0.8974 0.6275 0.7386 4518
general_frequency 0.8012 0.8673 0.8329 3173
house_place 0.9337 0.9168 0.9252 7067
ingredient 0.5481 0.0491 0.0901 1161
joke_type 0.8147 0.9101 0.8598 1435
list_name 0.8411 0.7275 0.7802 8188
meal_type 0.6072 0.8926 0.7227 2282
media_type 0.8578 0.8522 0.8550 17751
movie_name 0.4598 0.1856 0.2645 431
movie_type 0.2673 0.4341 0.3309 364
music_album 0.0000 0.0000 0.0000 146
music_descriptor 0.2906 0.3979 0.3359 1053
music_genre 0.7999 0.7483 0.7732 5908
news_topic 0.7052 0.5702 0.6306 9265
order_type 0.6374 0.8845 0.7409 2614
person 0.8173 0.9376 0.8733 33708
personal_info 0.7035 0.7444 0.7234 1976
place_name 0.8616 0.8228 0.8417 38881
player_setting 0.6429 0.6212 0.6319 5409
playlist_name 0.5852 0.5293 0.5559 3671
podcast_descriptor 0.7486 0.5413 0.6283 4951
podcast_name 0.6858 0.5675 0.6211 3339
radio_name 0.8196 0.8013 0.8103 9892
relation 0.6662 0.8569 0.7496 6477
song_name 0.5617 0.7527 0.6433 7251
sport_type 0.0000 0.0000 0.0000 0
time 0.9032 0.8195 0.8593 35456
time_zone 0.8368 0.4467 0.5824 2823
timeofday 0.7931 0.8459 0.8187 6140
transport_agency 0.7876 0.7764 0.7820 1051
transport_descriptor 0.5738 0.2756 0.3723 254
transport_name 0.8497 0.5149 0.6412 1010
transport_type 0.9303 0.8980 0.9139 6363
weather_descriptor 0.8584 0.7466 0.7986 11702
accuracy 0.9092 1455270
macro avg 0.6940 0.6668 0.6613 1455270
weighted avg 0.9111 0.9092 0.9086 1455270
```
|