lekssays commited on
Commit
273a343
·
verified ·
1 Parent(s): 3d1128a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -20
README.md CHANGED
@@ -4,14 +4,16 @@ tags:
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
-
 
 
8
  ---
9
 
10
  # SentSecBert
11
 
12
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
13
 
14
- <!--- Describe your model here -->
15
 
16
  ## Usage (Sentence-Transformers)
17
 
@@ -32,25 +34,14 @@ embeddings = model.encode(sentences)
32
  print(embeddings)
33
  ```
34
 
35
-
36
-
37
- ## Evaluation Results
38
-
39
- <!--- Describe how your model was evaluated -->
40
-
41
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=SentSecBert)
42
-
43
-
44
-
45
- ## Full Model Architecture
46
  ```
47
- SentenceTransformer(
48
- (0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: BertModel
49
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
50
- (2): Normalize()
51
- )
 
52
  ```
53
 
54
- ## Citing & Authors
55
 
56
- <!--- Describe where people can find more information -->
 
4
  - sentence-transformers
5
  - feature-extraction
6
  - sentence-similarity
7
+ - mitre_ttps
8
+ - security
9
+ - adversarial-threat-annotation
10
  ---
11
 
12
  # SentSecBert
13
 
14
  This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
15
 
16
+ This is a model used in our work "Semantic Ranking for Automated Adversarial Technique Annotation in Security Text". The code is available at: [https://github.com/qcri/Text2TTP](https://github.com/qcri/Text2TTP)
17
 
18
  ## Usage (Sentence-Transformers)
19
 
 
34
  print(embeddings)
35
  ```
36
 
37
+ ## Citation
 
 
 
 
 
 
 
 
 
 
38
  ```
39
+ @article{kumarasinghe2024semantic,
40
+ title={Semantic Ranking for Automated Adversarial Technique Annotation in Security Text},
41
+ author={Kumarasinghe, Udesh and Lekssays, Ahmed and Sencar, Husrev Taha and Boughorbel, Sabri and Elvitigala, Charitha and Nakov, Preslav},
42
+ journal={arXiv preprint arXiv:2403.17068},
43
+ year={2024}
44
+ }
45
  ```
46
 
 
47