--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** qcube - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # Sample use 以下は、elyza-tasks-100-TV_0.jsonl の回答のためのコードです。 ```python from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) import torch from tqdm import tqdm import json HF_TOKEN = "your-token" model_name = "qcube/llm-jp-3-13b-finetune3" # QLoRA config bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=False, ) # Load model model = AutoModelForCausalLM.from_pretrained( model_name, quantization_config=bnb_config, device_map="auto", token=HF_TOKEN, ) # Load tokenizer tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True, token=HF_TOKEN, ) # データセットの読み込み。 # omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。 datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # llmjp results = [] for data in tqdm(datasets): input = data["input"] prompt = f"""### 指示 {input} ### 回答: """ tokenized_input = tokenizer.encode( prompt, add_special_tokens=False, return_tensors="pt" ).to(model.device) with torch.no_grad(): outputs = model.generate( tokenized_input, max_new_tokens=100, do_sample=False, repetition_penalty=1.2 )[0] output = tokenizer.decode( outputs[tokenized_input.size(1) :], skip_special_tokens=True ) results.append({"task_id": data["task_id"], "input": input, "output": output}) import re model_name = re.sub(".*/", "", model_name) with open(f"./{model_name}-outputs.jsonl", "w", encoding="utf-8") as f: for result in results: json.dump( result, f, ensure_ascii=False ) # ensure_ascii=False for handling non-ASCII characters f.write("\n") ```