--- base_model: llm-jp/llm-jp-3-13b tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** qcube - **License:** apache-2.0 - **Finetuned from model :** llm-jp/llm-jp-3-13b This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth) # Sample use 以下は、elyza-tasks-100-TV_0.jsonl の回答のためのコードです。 ```python # ELYZA-tasks-100-TVの読み込み。事前にファイルをアップロードしてください # データセットの読み込み。 # omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。 import json datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = "" # 学習したモデルを用いてタスクを実行 from tqdm import tqdm # 推論するためにモデルのモードを変更 FastLanguageModel.for_inference(model) results = [] for dt in tqdm(datasets): input = dt["input"] prompt = f"""### 指示\n{input}\n### 回答\n""" inputs = tokenizer([prompt], return_tensors="pt").to(model.device) outputs = model.generate( **inputs, max_new_tokens=512, use_cache=True, do_sample=False, repetition_penalty=1.2, ) prediction = tokenizer.decode( outputs[0], skip_special_tokens=True, ).split( "\n### 回答" )[-1] results.append({"task_id": dt["task_id"], "input": input, "output": prediction}) # jsonlで保存 with open(f"{new_model_id}_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n') ```