--- license: mit base_model: facebookAI/xlm-roberta-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-large-finetuned-ner results: [] --- # xlm-roberta-large-finetuned-ner This model is a fine-tuned version of [facebookAI/xlm-roberta-large](https://huggingface.co/facebookAI/xlm-roberta-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0433 - Precision: 0.9625 - Recall: 0.9697 - F1: 0.9661 - Accuracy: 0.9916 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2077 | 1.0 | 878 | 0.0604 | 0.9361 | 0.9424 | 0.9392 | 0.9865 | | 0.0401 | 2.0 | 1756 | 0.0434 | 0.9589 | 0.9647 | 0.9618 | 0.9906 | | 0.0193 | 3.0 | 2634 | 0.0433 | 0.9625 | 0.9697 | 0.9661 | 0.9916 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2