Quentin Gallouédec
commited on
Commit
·
a4ac8ef
1
Parent(s):
285d410
Initial commit
Browse files- .gitattributes +1 -0
- README.md +77 -0
- args.yml +81 -0
- config.yml +24 -0
- ddpg-BipedalWalkerHardcore-v3.zip +3 -0
- ddpg-BipedalWalkerHardcore-v3/_stable_baselines3_version +1 -0
- ddpg-BipedalWalkerHardcore-v3/actor.optimizer.pth +3 -0
- ddpg-BipedalWalkerHardcore-v3/critic.optimizer.pth +3 -0
- ddpg-BipedalWalkerHardcore-v3/data +135 -0
- ddpg-BipedalWalkerHardcore-v3/policy.pth +3 -0
- ddpg-BipedalWalkerHardcore-v3/pytorch_variables.pth +3 -0
- ddpg-BipedalWalkerHardcore-v3/system_info.txt +7 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalkerHardcore-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: DDPG
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: BipedalWalkerHardcore-v3
|
16 |
+
type: BipedalWalkerHardcore-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -79.19 +/- 69.66
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **DDPG** Agent playing **BipedalWalkerHardcore-v3**
|
25 |
+
This is a trained model of a **DDPG** agent playing **BipedalWalkerHardcore-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ddpg --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ddpg --env BipedalWalkerHardcore-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ddpg --env BipedalWalkerHardcore-v3 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ddpg --env BipedalWalkerHardcore-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ddpg --env BipedalWalkerHardcore-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ddpg --env BipedalWalkerHardcore-v3 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('buffer_size', 200000),
|
66 |
+
('gamma', 0.98),
|
67 |
+
('gradient_steps', -1),
|
68 |
+
('learning_rate', 0.001),
|
69 |
+
('learning_starts', 10000),
|
70 |
+
('n_timesteps', 10000000.0),
|
71 |
+
('noise_std', 0.1),
|
72 |
+
('noise_type', 'normal'),
|
73 |
+
('policy', 'MlpPolicy'),
|
74 |
+
('policy_kwargs', 'dict(net_arch=[400, 300])'),
|
75 |
+
('train_freq', [1, 'episode']),
|
76 |
+
('normalize', False)])
|
77 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ddpg
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- BipedalWalkerHardcore-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 5
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 3347894908
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/BipedalWalkerHardcore-v3__ddpg__3347894908__1671758198
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- openrlbenchmark
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - yaml_file
|
81 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - buffer_size
|
3 |
+
- 200000
|
4 |
+
- - gamma
|
5 |
+
- 0.98
|
6 |
+
- - gradient_steps
|
7 |
+
- -1
|
8 |
+
- - learning_rate
|
9 |
+
- 0.001
|
10 |
+
- - learning_starts
|
11 |
+
- 10000
|
12 |
+
- - n_timesteps
|
13 |
+
- 10000000.0
|
14 |
+
- - noise_std
|
15 |
+
- 0.1
|
16 |
+
- - noise_type
|
17 |
+
- normal
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
20 |
+
- - policy_kwargs
|
21 |
+
- dict(net_arch=[400, 300])
|
22 |
+
- - train_freq
|
23 |
+
- - 1
|
24 |
+
- episode
|
ddpg-BipedalWalkerHardcore-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba50da0df04c20f962927027c38d01beb6b864e53df4b992a88705721149ed77
|
3 |
+
size 4259392
|
ddpg-BipedalWalkerHardcore-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
ddpg-BipedalWalkerHardcore-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43da930abe43f50ae3a7cdc3c692bbc77644b365a7fe00f284e6c479ecaa3969
|
3 |
+
size 1056943
|
ddpg-BipedalWalkerHardcore-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eeb2c622f6c622068add1b717a9c799bdea8ba239b16e01540ee3148259ba0fc
|
3 |
+
size 1062447
|
ddpg-BipedalWalkerHardcore-v3/data
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.td3.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function TD3Policy.__init__ at 0x7feaf0ced940>",
|
8 |
+
"_build": "<function TD3Policy._build at 0x7feaf0ced9d0>",
|
9 |
+
"_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7feaf0ceda60>",
|
10 |
+
"make_actor": "<function TD3Policy.make_actor at 0x7feaf0cedaf0>",
|
11 |
+
"make_critic": "<function TD3Policy.make_critic at 0x7feaf0cedb80>",
|
12 |
+
"forward": "<function TD3Policy.forward at 0x7feaf0cedc10>",
|
13 |
+
"_predict": "<function TD3Policy._predict at 0x7feaf0cedca0>",
|
14 |
+
"set_training_mode": "<function TD3Policy.set_training_mode at 0x7feaf0cedd30>",
|
15 |
+
"__abstractmethods__": "frozenset()",
|
16 |
+
"_abc_impl": "<_abc._abc_data object at 0x7feaf0cf4100>"
|
17 |
+
},
|
18 |
+
"verbose": 1,
|
19 |
+
"policy_kwargs": {
|
20 |
+
"net_arch": [
|
21 |
+
400,
|
22 |
+
300
|
23 |
+
],
|
24 |
+
"n_critics": 1
|
25 |
+
},
|
26 |
+
"observation_space": {
|
27 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
28 |
+
":serialized:": "gAWVPwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLGIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWYAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP+UaApLGIWUjAFDlHSUUpSMBGhpZ2iUaBIolmAAAAAAAAAAAACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lGgKSxiFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsYhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
29 |
+
"dtype": "float32",
|
30 |
+
"_shape": [
|
31 |
+
24
|
32 |
+
],
|
33 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
34 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf]",
|
35 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
36 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False]",
|
37 |
+
"_np_random": null
|
38 |
+
},
|
39 |
+
"action_space": {
|
40 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
41 |
+
":serialized:": "gAWVIgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/lGgKSwSFlIwBQ5R0lFKUjARoaWdolGgSKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaApLBIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYEAAAAAAAAAAEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYEAAAAAAAAAAEBAQGUaCFLBIWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
42 |
+
"dtype": "float32",
|
43 |
+
"_shape": [
|
44 |
+
4
|
45 |
+
],
|
46 |
+
"low": "[-1. -1. -1. -1.]",
|
47 |
+
"high": "[1. 1. 1. 1.]",
|
48 |
+
"bounded_below": "[ True True True True]",
|
49 |
+
"bounded_above": "[ True True True True]",
|
50 |
+
"_np_random": "RandomState(MT19937)"
|
51 |
+
},
|
52 |
+
"n_envs": 1,
|
53 |
+
"num_timesteps": 10000831,
|
54 |
+
"_total_timesteps": 10000000,
|
55 |
+
"_num_timesteps_at_start": 0,
|
56 |
+
"seed": 0,
|
57 |
+
"action_noise": {
|
58 |
+
":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
|
59 |
+
":serialized:": "gAWVGgEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBIWUjAFDlHSUUpSMBl9zaWdtYZRoCCiWIAAAAAAAAACamZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5RoD0sEhZRoE3SUUpR1Yi4=",
|
60 |
+
"_mu": "[0. 0. 0. 0.]",
|
61 |
+
"_sigma": "[0.1 0.1 0.1 0.1]"
|
62 |
+
},
|
63 |
+
"start_time": 1671758200901169495,
|
64 |
+
"learning_rate": {
|
65 |
+
":type:": "<class 'function'>",
|
66 |
+
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
67 |
+
},
|
68 |
+
"tensorboard_log": "runs/BipedalWalkerHardcore-v3__ddpg__3347894908__1671758198/BipedalWalkerHardcore-v3",
|
69 |
+
"lr_schedule": {
|
70 |
+
":type:": "<class 'function'>",
|
71 |
+
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
72 |
+
},
|
73 |
+
"_last_obs": null,
|
74 |
+
"_last_episode_starts": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
77 |
+
},
|
78 |
+
"_last_original_obs": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAANGHsT7svSKx4TTCMTOau7HZvFW/AACApqSKIr8AAAAAAACAP9M8Ub8AAAAAgBpvPwAAgCcAAIA/LehBPugbRD7u+Eo+XVhXPnLxaj5ZJ4M+W86UPlyFsD51R+E+pawnP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsYhpSMAUOUdJRSlC4="
|
81 |
+
},
|
82 |
+
"_episode_num": 12767,
|
83 |
+
"use_sde": false,
|
84 |
+
"sde_sample_freq": -1,
|
85 |
+
"_current_progress_remaining": -8.30999999998916e-05,
|
86 |
+
"ep_info_buffer": {
|
87 |
+
":type:": "<class 'collections.deque'>",
|
88 |
+
":serialized:": "gAWVcxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAFKbOLm3NkCUhpRSlIwBbJRN0AeMAXSUR0DkjwTj4HopdX2UKGgGaAloD0MIVfoJZ7d6QsCUhpRSlGgVTdAHaBZHQOSP9NWbPQh1fZQoaAZoCWgPQwi7JTlg125kwJSGlFKUaBVN0AdoFkdA5JGViHRCyHV9lChoBmgJaA9DCK3D0VW6HWjAlIaUUpRoFU3QB2gWR0Dkkp5fMwDedX2UKGgGaAloD0MIb57qkJtZZ8CUhpRSlGgVTdAHaBZHQOSTozIPsiV1fZQoaAZoCWgPQwjMf0i/fbRmwJSGlFKUaBVN0AdoFkdA5JSrzGYKIHV9lChoBmgJaA9DCDEIrBxazVnAlIaUUpRoFU3QB2gWR0DklbWTTvy9dX2UKGgGaAloD0MIUmFsIUh4YsCUhpRSlGgVTdAHaBZHQOSWv5rJr+J1fZQoaAZoCWgPQwj8qIb9ntlowJSGlFKUaBVN0AdoFkdA5JfIS3LFGXV9lChoBmgJaA9DCMlVLH5TPmHAlIaUUpRoFU3QB2gWR0DkmNIpIczZdX2UKGgGaAloD0MIIqZEEr1XUMCUhpRSlGgVTRQCaBZHQOSZw0Hnln11fZQoaAZoCWgPQwiy2ZHqu4FqwJSGlFKUaBVNCQVoFkdA5JoWt2TxG3V9lChoBmgJaA9DCMWqQZhb4mfAlIaUUpRoFU3QB2gWR0Dkms4xoqTbdX2UKGgGaAloD0MI3H75ZMXqZ8CUhpRSlGgVTdAHaBZHQOSb2A7LdN51fZQoaAZoCWgPQwiZ1TvcjvdowJSGlFKUaBVN0AdoFkdA5JzZRY7q6nV9lChoBmgJaA9DCHicoiM5o2fAlIaUUpRoFU3QB2gWR0Dknmd7XxvvdX2UKGgGaAloD0MI2pB/ZhDzaMCUhpRSlGgVTdAHaBZHQOSfdskGA091fZQoaAZoCWgPQwi8s3bbhYNUwJSGlFKUaBVL9GgWR0DkoGOfyPMjdX2UKGgGaAloD0MIT+s2qH1bYcCUhpRSlGgVTdsFaBZHQOSglbLOiWV1fZQoaAZoCWgPQwh5y9WPTa1wwJSGlFKUaBVNswZoFkdA5KFVFYEGJXV9lChoBmgJaA9DCJJbk25LfWTAlIaUUpRoFU11BGgWR0DkojF27FsIdX2UKGgGaAloD0MIgqrRqwH0WsCUhpRSlGgVTQEBaBZHQOSivWE0zj51fZQoaAZoCWgPQwiEud3LfZJOwJSGlFKUaBVNzgFoFkdA5KLjVEE1VHV9lChoBmgJaA9DCF2I1R9hVlvAlIaUUpRoFUvuaBZHQOSjHRtelbh1fZQoaAZoCWgPQwiGV5I8V29nwJSGlFKUaBVN0AdoFkdA5KNa9kSVW3V9lChoBmgJaA9DCCJPkq6ZL2LAlIaUUpRoFU3QB2gWR0DkpGOPrfLtdX2UKGgGaAloD0MIjkC8rl9KXMCUhpRSlGgVTcEBaBZHQOSlUp2pyZN1fZQoaAZoCWgPQwgfvHZpw9howJSGlFKUaBVN0AdoFkdA5KWpEBS1mnV9lChoBmgJaA9DCHbgnBGlfWfAlIaUUpRoFU3QB2gWR0DkprITibUgdX2UKGgGaAloD0MIr5emCHCiWsCUhpRSlGgVS/RoFkdA5KedG3vx6XV9lChoBmgJaA9DCB41JsTc8mjAlIaUUpRoFU3QB2gWR0Dkp9tb6guidX2UKGgGaAloD0MIr30BvXCmXMCUhpRSlGgVTQUBaBZHQOSouTGBFux1fZQoaAZoCWgPQwjja88sieBnwJSGlFKUaBVN0AdoFkdA5Kj5vAoG6nV9lChoBmgJaA9DCA3C3O7l0lXAlIaUUpRoFU3QB2gWR0DkqgLqmCRPdX2UKGgGaAloD0MIYoOFk7QwacCUhpRSlGgVTdAHaBZHQOSrkWKVII51fZQoaAZoCWgPQwjZXaCkQAhmwJSGlFKUaBVN0AdoFkdA5KyblkpZwHV9lChoBmgJaA9DCFn8prBSb2fAlIaUUpRoFU3QB2gWR0DkraUf/3nIdX2UKGgGaAloD0MIY9AJoYOiVMCUhpRSlGgVTdAHaBZHQOSusDsyBTZ1fZQoaAZoCWgPQwgrvqHw2dZbwJSGlFKUaBVN0AdoFkdA5K+7BKUVz3V9lChoBmgJaA9DCAbYR6euRGLAlIaUUpRoFU3QB2gWR0DksMZAOavzdX2UKGgGaAloD0MIEXFzKhnSTMCUhpRSlGgVTQICaBZHQOSxtq8Djip1fZQoaAZoCWgPQwhtAgzLnyZVQJSGlFKUaBVN0AdoFkdA5LIUCngpB3V9lChoBmgJaA9DCHe9NEWAx1LAlIaUUpRoFU1bAWgWR0DkswEfqX4TdX2UKGgGaAloD0MIxmrz/6pQVMCUhpRSlGgVTQoDaBZHQOSzNoezUqh1fZQoaAZoCWgPQwiXH7jKE9BSQJSGlFKUaBVN0AdoFkdA5LOyTEaVEHV9lChoBmgJaA9DCI2XbhKDiVPAlIaUUpRoFU0VAWgWR0DktJ2eK8+SdX2UKGgGaAloD0MI+KqVCT/Nb8CUhpRSlGgVTcIHaBZHQOS03tZid8R1fZQoaAZoCWgPQwjbEyS2O3FmwJSGlFKUaBVN0AdoFkdA5LXljfvWpnV9lChoBmgJaA9DCB3oobYNXlXAlIaUUpRoFU2iBGgWR0DktuLd56dEdX2UKGgGaAloD0MIKQZINIFfWcCUhpRSlGgVS8FoFkdA5LdwLteD4HV9lChoBmgJaA9DCNWSjnIwkVHAlIaUUpRoFU3QB2gWR0Dkt6jZCfHxdX2UKGgGaAloD0MI2ucxyjMpVcCUhpRSlGgVTdAHaBZHQOS5UA4EOiF1fZQoaAZoCWgPQwg5J/bQvh5pwJSGlFKUaBVN0AdoFkdA5LpY0pVjqnV9lChoBmgJaA9DCBtMw/ARLGLAlIaUUpRoFU3QB2gWR0Dku2JH7P6bdX2UKGgGaAloD0MIB5rPuducYsCUhpRSlGgVTdAHaBZHQOS8axl4C6p1fZQoaAZoCWgPQwiqfxDJkH1mwJSGlFKUaBVN0AdoFkdA5L10AQpWm3V9lChoBmgJaA9DCMcPlUZMnWJAlIaUUpRoFU3BB2gWR0DkvnxGoaUBdX2UKGgGaAloD0MIUd7H0RzmZ8CUhpRSlGgVTXwEaBZHQOS/dPktEoh1fZQoaAZoCWgPQwjdskP8w3JSwJSGlFKUaBVNDAFoFkdA5L//X7Lt/nV9lChoBmgJaA9DCL/XEByXKFXAlIaUUpRoFU3IAmgWR0DkwCpdszl+dX2UKGgGaAloD0MI+wJ64c61IMCUhpRSlGgVTdcBaBZHQOTAhIwoLG91fZQoaAZoCWgPQwhs0Jfe/thEwJSGlFKUaBVNMgFoFkdA5MDAGAskIHV9lChoBmgJaA9DCL39uWjIxDlAlIaUUpRoFU0bA2gWR0DkwPDiExqPdX2UKGgGaAloD0MIOutTjkmJYMCUhpRSlGgVTcsBaBZHQOTBVFyYG+t1fZQoaAZoCWgPQwhPB7KeWlhYwJSGlFKUaBVLqWgWR0DkwYxnSOR1dX2UKGgGaAloD0MIXcXiNwX4aMCUhpRSlGgVTdAHaBZHQOTBwWsvIwN1fZQoaAZoCWgPQwihTKPJxVZawJSGlFKUaBVL7GgWR0Dkwq00EX+EdX2UKGgGaAloD0MIhJuMKkPQZ8CUhpRSlGgVTdAHaBZHQOTC6o2n8891fZQoaAZoCWgPQwjAkxYuK2BiwJSGlFKUaBVN0AdoFkdA5MP2bTtsvnV9lChoBmgJaA9DCMFY38DkEVjAlIaUUpRoFUvFaBZHQOTE4cfq5b11fZQoaAZoCWgPQwgLCK2HL31SwJSGlFKUaBVNjQFoFkdA5MT/XSSeRXV9lChoBmgJaA9DCB3Lu+oBxmfAlIaUUpRoFU3QB2gWR0DkxVCXokiVdX2UKGgGaAloD0MIIT8buW6gT0CUhpRSlGgVTdAHaBZHQOTGdqcd5pt1fZQoaAZoCWgPQwgwn6wYroBowJSGlFKUaBVN0AdoFkdA5Md/3okiU3V9lChoBmgJaA9DCB40u+6tNVjAlIaUUpRoFUu2aBZHQOTIat2s7uF1fZQoaAZoCWgPQwhOYhBYOdRIwJSGlFKUaBVNlAFoFkdA5MiG+so2GnV9lChoBmgJaA9DCF1Q3zKnNzLAlIaUUpRoFU3FAWgWR0DkyL3WdVebdX2UKGgGaAloD0MIwyreyDz9VMCUhpRSlGgVTQ8BaBZHQOTI93AwfyR1fZQoaAZoCWgPQwjY1HlUPKVxwJSGlFKUaBVNSAdoFkdA5Mk2tuLrHHV9lChoBmgJaA9DCPOtD+uN+j7AlIaUUpRoFU1fAWgWR0DkyhQ2m52AdX2UKGgGaAloD0MI36eq0EAmXsCUhpRSlGgVTW0BaBZHQOTKQtKZlWh1fZQoaAZoCWgPQwiGkV7U7vBawJSGlFKUaBVL+2gWR0DkynFSQYDUdX2UKGgGaAloD0MIC3+GN+u8Z8CUhpRSlGgVTdAHaBZHQOTKsNDUmUp1fZQoaAZoCWgPQwhTliGOdVtfwJSGlFKUaBVLjWgWR0Dky5lxp+MIdX2UKGgGaAloD0MIgEkqU8y8WsCUhpRSlGgVS/loFkdA5MuuCxmkFnV9lChoBmgJaA9DCHSXxFkRImHAlIaUUpRoFUv2aBZHQOTLzt1SwW51fZQoaAZoCWgPQwi0BBkBFWRWwJSGlFKUaBVLoWgWR0Dky+4Dr7fpdX2UKGgGaAloD0MI5gRtcvi4NsCUhpRSlGgVTeMCaBZHQOTMDNSl3yJ1fZQoaAZoCWgPQwh+5UF6iiJYwJSGlFKUaBVLsWgWR0DkzGUSntOVdX2UKGgGaAloD0MI8IgK1c0rY8CUhpRSlGgVTbgBaBZHQOTMgORcNYt1fZQoaAZoCWgPQwjhB+dTR/ZkwJSGlFKUaBVNLgJoFkdA5My9Hg5zYHV9lChoBmgJaA9DCI23lV4bZ2DAlIaUUpRoFU3QB2gWR0DkzR/19v0idX2UKGgGaAloD0MI18BWCRY5T8CUhpRSlGgVTR4BaBZHQOTODOHDaXd1fZQoaAZoCWgPQwh1rb1P1TJnwJSGlFKUaBVN0AdoFkdA5M5QDPOY6XV9lChoBmgJaA9DCEKUL2ihzmfAlIaUUpRoFU3QB2gWR0Dkz1ePkq+bdX2UKGgGaAloD0MIfO4E+y9MaMCUhpRSlGgVTdAHaBZHQOTQRgE8q4J1fZQoaAZoCWgPQwgb8s8M4uxiwJSGlFKUaBVN0AdoFkdA5NFHSDIzWXV9lChoBmgJaA9DCOm12ViJDVTAlIaUUpRoFU0LAWgWR0Dk0jSm4y44dX2UKGgGaAloD0MIlfJaCd0+V8CUhpRSlGgVTdAHaBZHQOTSdcKu0Tl1fZQoaAZoCWgPQwg2y2Wj83ViwJSGlFKUaBVN0AdoFkdA5NPsaEzwdHVlLg=="
|
89 |
+
},
|
90 |
+
"ep_success_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
93 |
+
},
|
94 |
+
"_n_updates": 9991571,
|
95 |
+
"buffer_size": 1,
|
96 |
+
"batch_size": 100,
|
97 |
+
"learning_starts": 10000,
|
98 |
+
"tau": 0.005,
|
99 |
+
"gamma": 0.98,
|
100 |
+
"gradient_steps": -1,
|
101 |
+
"optimize_memory_usage": false,
|
102 |
+
"replay_buffer_class": {
|
103 |
+
":type:": "<class 'abc.ABCMeta'>",
|
104 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
105 |
+
"__module__": "stable_baselines3.common.buffers",
|
106 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
107 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7feaf0ce9430>",
|
108 |
+
"add": "<function ReplayBuffer.add at 0x7feaf0ce94c0>",
|
109 |
+
"sample": "<function ReplayBuffer.sample at 0x7feaf0ce9550>",
|
110 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7feaf0ce95e0>",
|
111 |
+
"__abstractmethods__": "frozenset()",
|
112 |
+
"_abc_impl": "<_abc._abc_data object at 0x7feaf0cdff80>"
|
113 |
+
},
|
114 |
+
"replay_buffer_kwargs": {},
|
115 |
+
"train_freq": {
|
116 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
117 |
+
":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
|
118 |
+
},
|
119 |
+
"use_sde_at_warmup": false,
|
120 |
+
"policy_delay": 1,
|
121 |
+
"target_noise_clip": 0.0,
|
122 |
+
"target_policy_noise": 0.1,
|
123 |
+
"_action_repeat": [
|
124 |
+
null
|
125 |
+
],
|
126 |
+
"surgeon": null,
|
127 |
+
"actor_batch_norm_stats": [],
|
128 |
+
"critic_batch_norm_stats": [],
|
129 |
+
"actor_batch_norm_stats_target": [],
|
130 |
+
"critic_batch_norm_stats_target": [],
|
131 |
+
"_last_action": {
|
132 |
+
":type:": "<class 'numpy.ndarray'>",
|
133 |
+
":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLBIaUjAFDlHSUUpQu"
|
134 |
+
}
|
135 |
+
}
|
ddpg-BipedalWalkerHardcore-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a56609158f9f356303fde427877b2c44c4741500b2c21cf43c14ed3d0455436
|
3 |
+
size 2117597
|
ddpg-BipedalWalkerHardcore-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ddpg-BipedalWalkerHardcore-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e8672b5549dbb5f498153867d224443d8091880bd566c6b4df355761182eedb
|
3 |
+
size 205136
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -79.1919905, "std_reward": 69.66077850749745, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T17:26:09.769068"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2f3f8b005f0aa534a7968192f5b5bbd7ffc82d2e5bce681ef7bb8c08a567fa4
|
3 |
+
size 409884
|