Quentin Gallouédec
commited on
Commit
·
ef88293
1
Parent(s):
45808fa
Initial commit
Browse files- .gitattributes +1 -0
- README.md +80 -0
- args.yml +83 -0
- config.yml +29 -0
- env_kwargs.yml +1 -0
- ppo-InvertedDoublePendulum-v2.zip +3 -0
- ppo-InvertedDoublePendulum-v2/_stable_baselines3_version +1 -0
- ppo-InvertedDoublePendulum-v2/data +103 -0
- ppo-InvertedDoublePendulum-v2/policy.optimizer.pth +3 -0
- ppo-InvertedDoublePendulum-v2/policy.pth +3 -0
- ppo-InvertedDoublePendulum-v2/pytorch_variables.pth +3 -0
- ppo-InvertedDoublePendulum-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- InvertedDoublePendulum-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: InvertedDoublePendulum-v2
|
16 |
+
type: InvertedDoublePendulum-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 9357.95 +/- 0.89
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **InvertedDoublePendulum-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **InvertedDoublePendulum-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env InvertedDoublePendulum-v2 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ppo --env InvertedDoublePendulum-v2 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env InvertedDoublePendulum-v2 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ppo --env InvertedDoublePendulum-v2 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ppo --env InvertedDoublePendulum-v2 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ppo --env InvertedDoublePendulum-v2 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 512),
|
66 |
+
('clip_range', 0.4),
|
67 |
+
('ent_coef', 1.05057e-06),
|
68 |
+
('gae_lambda', 0.8),
|
69 |
+
('gamma', 0.98),
|
70 |
+
('learning_rate', 0.000155454),
|
71 |
+
('max_grad_norm', 0.5),
|
72 |
+
('n_envs', 1),
|
73 |
+
('n_epochs', 10),
|
74 |
+
('n_steps', 128),
|
75 |
+
('n_timesteps', 1000000.0),
|
76 |
+
('normalize', True),
|
77 |
+
('policy', 'MlpPolicy'),
|
78 |
+
('vf_coef', 0.695929),
|
79 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
80 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- InvertedDoublePendulum-v2
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 20
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 5
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 3011714954
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/InvertedDoublePendulum-v2__ppo__3011714954__1675791483
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- openrlbenchmark
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 512
|
4 |
+
- - clip_range
|
5 |
+
- 0.4
|
6 |
+
- - ent_coef
|
7 |
+
- 1.05057e-06
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.8
|
10 |
+
- - gamma
|
11 |
+
- 0.98
|
12 |
+
- - learning_rate
|
13 |
+
- 0.000155454
|
14 |
+
- - max_grad_norm
|
15 |
+
- 0.5
|
16 |
+
- - n_envs
|
17 |
+
- 1
|
18 |
+
- - n_epochs
|
19 |
+
- 10
|
20 |
+
- - n_steps
|
21 |
+
- 128
|
22 |
+
- - n_timesteps
|
23 |
+
- 1000000.0
|
24 |
+
- - normalize
|
25 |
+
- true
|
26 |
+
- - policy
|
27 |
+
- MlpPolicy
|
28 |
+
- - vf_coef
|
29 |
+
- 0.695929
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-InvertedDoublePendulum-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55fcfe2ae52918d2ede4b44befd4fc09558a0f57b8293d2292ccade39af636b0
|
3 |
+
size 155798
|
ppo-InvertedDoublePendulum-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
ppo-InvertedDoublePendulum-v2/data
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f44bf052ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f44bf052f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f44bf054040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f44bf0540d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f44bf054160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f44bf0541f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f44bf054280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f44bf054310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f44bf0543a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f44bf054430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f44bf0544c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f44bf054550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f44bf053780>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVFQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLC4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwuFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLC4WUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYLAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwuFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCwAAAAAAAAAAAAAAAAAAAAAAAJRoIUsLhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
27 |
+
"dtype": "float64",
|
28 |
+
"_shape": [
|
29 |
+
11
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
39 |
+
":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAIC/lGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAgD+UaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
40 |
+
"dtype": "float32",
|
41 |
+
"_shape": [
|
42 |
+
1
|
43 |
+
],
|
44 |
+
"low": "[-1.]",
|
45 |
+
"high": "[1.]",
|
46 |
+
"bounded_below": "[ True]",
|
47 |
+
"bounded_above": "[ True]",
|
48 |
+
"_np_random": "RandomState(MT19937)"
|
49 |
+
},
|
50 |
+
"n_envs": 1,
|
51 |
+
"num_timesteps": 1000064,
|
52 |
+
"_total_timesteps": 1000000,
|
53 |
+
"_num_timesteps_at_start": 0,
|
54 |
+
"seed": 0,
|
55 |
+
"action_noise": null,
|
56 |
+
"start_time": 1675791486654439367,
|
57 |
+
"learning_rate": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9xZ2FsbG91ZWRlYy9lbnZfYmVuY2htYXJrL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8kYCuxKygZhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
60 |
+
},
|
61 |
+
"tensorboard_log": "runs/InvertedDoublePendulum-v2__ppo__3011714954__1675791483/InvertedDoublePendulum-v2",
|
62 |
+
"lr_schedule": {
|
63 |
+
":type:": "<class 'function'>",
|
64 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9xZ2FsbG91ZWRlYy9lbnZfYmVuY2htYXJrL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8kYCuxKygZhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
65 |
+
},
|
66 |
+
"_last_obs": null,
|
67 |
+
"_last_episode_starts": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
70 |
+
},
|
71 |
+
"_last_original_obs": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAAJhO3lE30LO/UBxe5oYYqL8XFC8VPe6vP4IS20fs9u8/aGrcxA3w7z9UwsAuA3a1P9DspDpKX3q/FWJmf55koD8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLC4aUjAFDlHSUUpQu"
|
74 |
+
},
|
75 |
+
"_episode_num": 0,
|
76 |
+
"use_sde": false,
|
77 |
+
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": -6.4000000000064e-05,
|
79 |
+
"ep_info_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ/bQPla9ZECUhpRSlIwBbJRLEowBdJRHQKgM22x6fJ51fZQoaAZoCWgPQwi2Dg72ZhR+QJSGlFKUaBVLNGgWR0CoDRPjXFtLdX2UKGgGaAloD0MIZJKRszAXbkCUhpRSlGgVSxpoFkdAqA0xgPVd5nV9lChoBmgJaA9DCMiXUMFhi31AlIaUUpRoFUszaBZHQKgNrVmz0H11fZQoaAZoCWgPQwgzxLEubvpdQJSGlFKUaBVLDWgWR0CoDbqTbFjvdX2UKGgGaAloD0MI8Ui8PB28ZECUhpRSlGgVSxJoFkdAqA3Qsf7rLXV9lChoBmgJaA9DCOolxjJdlIBAlIaUUpRoFUs5aBZHQKgOG/xDst11fZQoaAZoCWgPQwjpCyHnPetxQJSGlFKUaBVLH2gWR0CoDnpCrtE5dX2UKGgGaAloD0MIYoIavoUmZ0CUhpRSlGgVSxRoFkdAqA6Vk1/DtXV9lChoBmgJaA9DCNpzmZqEh2pAlIaUUpRoFUsXaBZHQKgOslw97nh1fZQoaAZoCWgPQwiNR6mEJ+F0QJSGlFKUaBVLJGgWR0CoDuCY9gWrdX2UKGgGaAloD0MI7x6g+3LjZUCUhpRSlGgVSxNoFkdAqA74c1fmcXV9lChoBmgJaA9DCJqy0w/qZnVAlIaUUpRoFUslaBZHQKgPWf6oESx1fZQoaAZoCWgPQwjek4eF2uN7QJSGlFKUaBVLMGgWR0CoEB642CNCdX2UKGgGaAloD0MIH73hPnKqZECUhpRSlGgVSxJoFkdAqBA28ujASHV9lChoBmgJaA9DCAN9Ik/SMndAlIaUUpRoFUsoaBZHQKgQa/iYLLJ1fZQoaAZoCWgPQwj7BiY3CnV1QJSGlFKUaBVLJWgWR0CoEMvdM0xedX2UKGgGaAloD0MIq8spAfHzgUCUhpRSlGgVSz5oFkdAqBEbxy4nW3V9lChoBmgJaA9DCKhSswdaxm5AlIaUUpRoFUsbaBZHQKgRPqlgtvp1fZQoaAZoCWgPQwgsLLgfcEdoQJSGlFKUaBVLFWgWR0CoEYk0aZQYdX2UKGgGaAloD0MI9FDbhtEIhECUhpRSlGgVS0VoFkdAqBHm/1xsEnV9lChoBmgJaA9DCMOcoE2OwWxAlIaUUpRoFUsZaBZHQKgSCTV2A5J1fZQoaAZoCWgPQwgkfzDw3C9oQJSGlFKUaBVLFWgWR0CoElELQXyidX2UKGgGaAloD0MIak3zjlPheECUhpRSlGgVSytoFkdAqBKNQyhzvXV9lChoBmgJaA9DCOscA7KX7nxAlIaUUpRoFUsyaBZHQKgSzhXKbKB1fZQoaAZoCWgPQwg3/686MlmCQJSGlFKUaBVLP2gWR0CoEzkPlMh6dX2UKGgGaAloD0MI2SJpN/p3aUCUhpRSlGgVSxZoFkdAqBNSIYWLxnV9lChoBmgJaA9DCJF/ZhAfeoNAlIaUUpRoFUtDaBZHQKgTmNlyzX11fZQoaAZoCWgPQwgzGY7nM1lZQJSGlFKUaBVLC2gWR0CoE8wRXfZVdX2UKGgGaAloD0MIJjeKrDWGY0CUhpRSlGgVSxFoFkdAqBPdCswL3XV9lChoBmgJaA9DCObrMvw3a5RAlIaUUpRoFUuMaBZHQKgUljWkJrt1fZQoaAZoCWgPQwhnCp3XeMaAQJSGlFKUaBVLOmgWR0CoFNJ6hQFcdX2UKGgGaAloD0MIO1W+Z4T1hECUhpRSlGgVS0hoFkdAqBVJ4yGi6HV9lChoBmgJaA9DCIfboWExrGRAlIaUUpRoFUsSaBZHQKgVXdRBNVR1fZQoaAZoCWgPQwg0ZacflMxwQJSGlFKUaBVLHWgWR0CoFXry1/lRdX2UKGgGaAloD0MI8u8zLiwupUCUhpRSlGgVTSIBaBZHQKgXVLKV6eJ1fZQoaAZoCWgPQwjK+s3EdDp4QJSGlFKUaBVLKmgWR0CoF76ef7JodX2UKGgGaAloD0MIR450BsYGdkCUhpRSlGgVSyZoFkdAqBftPP9k0HV9lChoBmgJaA9DCAQ7/gskaYFAlIaUUpRoFUs8aBZHQKgYP84xUNt1fZQoaAZoCWgPQwgdyHpq9UJ7QJSGlFKUaBVLL2gWR0CoGLSRjjJddX2UKGgGaAloD0MILiC0Hj5BdECUhpRSlGgVSyNoFkdAqBjkLfDUE3V9lChoBmgJaA9DCAiT4uPTG3NAlIaUUpRoFUshaBZHQKgZEJ0nw5N1fZQoaAZoCWgPQwiXrIpwE0J0QJSGlFKUaBVLI2gWR0CoGXHgHeJpdX2UKGgGaAloD0MIrd7hduiUdkCUhpRSlGgVSydoFkdAqBmoQtjCpHV9lChoBmgJaA9DCMkdNpG5hIBAlIaUUpRoFUs5aBZHQKgZ9lgc94h1fZQoaAZoCWgPQwjH8NjPoil+QJSGlFKUaBVLNGgWR0CoGnHm7rcCdX2UKGgGaAloD0MI8Q7wpIXEe0CUhpRSlGgVSzBoFkdAqBq1Tgl4T3V9lChoBmgJaA9DCJ3ZrtAnnItAlIaUUpRoFUtfaBZHQKgbWt29tdl1fZQoaAZoCWgPQwggXWxaaYB5QJSGlFKUaBVLLGgWR0CoG4tL127ndX2UKGgGaAloD0MIkga3tYUagUCUhpRSlGgVSztoFkdAqBvzjT8YRHV9lChoBmgJaA9DCGFwzR19XmlAlIaUUpRoFUsWaBZHQKgcCctGus91fZQoaAZoCWgPQwhDVyJQ/UZoQJSGlFKUaBVLFWgWR0CoHCJQUHpsdX2UKGgGaAloD0MII/PIHwwrd0CUhpRSlGgVSyhoFkdAqBxPiFTNuHV9lChoBmgJaA9DCEt2bATi62xAlIaUUpRoFUsZaBZHQKgclfpljEx1fZQoaAZoCWgPQwi77NedrgZ2QJSGlFKUaBVLJmgWR0CoHL+tbLU1dX2UKGgGaAloD0MIMGZLVsWYdkCUhpRSlGgVSydoFkdAqBzotL+PzXV9lChoBmgJaA9DCMlyEkqhR8JAlIaUUpRoFU3oA2gWR0CoI2kIPbwjdX2UKGgGaAloD0MISbpm8g2Uc0CUhpRSlGgVSyJoFkdAqCOW/zreInV9lChoBmgJaA9DCMMN+PzwrXNAlIaUUpRoFUsiaBZHQKgj/kd3jdZ1fZQoaAZoCWgPQwiJljyeVpN9QJSGlFKUaBVLM2gWR0CoJDzCcf/4dX2UKGgGaAloD0MIHa7VHrbTf0CUhpRSlGgVSzdoFkdAqCR3UhFEzHV9lChoBmgJaA9DCELMJVVboYZAlIaUUpRoFUtOaBZHQKgk9tKqXF91fZQoaAZoCWgPQwidvp6vWZ5qQJSGlFKUaBVLF2gWR0CoJQ8rAgxKdX2UKGgGaAloD0MI6Iam7HR1YkCUhpRSlGgVSxBoFkdAqCUg5YHPeHV9lChoBmgJaA9DCF7acFj6foBAlIaUUpRoFUs5aBZHQKglik6cRUZ1fZQoaAZoCWgPQwjfpj/7caKBQJSGlFKUaBVLPWgWR0CoJcpfICEIdX2UKGgGaAloD0MIBp0QOmiLY0CUhpRSlGgVSxFoFkdAqCXb5M10knV9lChoBmgJaA9DCDsb8s/M+H1AlIaUUpRoFUs0aBZHQKgmQJWNm191fZQoaAZoCWgPQwgzbf/KimqMQJSGlFKUaBVLYmgWR0CoJtPCdjG2dX2UKGgGaAloD0MIj3Ba8OIzdECUhpRSlGgVSyNoFkdAqCb42ETQFHV9lChoBmgJaA9DCMNjP4slwndAlIaUUpRoFUspaBZHQKgnIrBj4Hp1fZQoaAZoCWgPQwgPttjte0fCQJSGlFKUaBVN6ANoFkdAqC2u0eEIxHV9lChoBmgJaA9DCD//PXgtCnBAlIaUUpRoFUscaBZHQKgtzhjvuw51fZQoaAZoCWgPQwgk0jb+BMV7QJSGlFKUaBVLMGgWR0CoLiUZNwirdX2UKGgGaAloD0MILQd6qG2lc0CUhpRSlGgVSyJoFkdAqC5KUC7sfXV9lChoBmgJaA9DCGcPtAJDNXtAlIaUUpRoFUsvaBZHQKgufG6PKdR1fZQoaAZoCWgPQwjfMTz2j0fCQJSGlFKUaBVN6ANoFkdAqDUYymALA3V9lChoBmgJaA9DCBRBnIedR8JAlIaUUpRoFU3oA2gWR0CoOzNhE0BPdX2UKGgGaAloD0MIomKcv6NHwkCUhpRSlGgVTegDaBZHQKhBUUxEfDF1fZQoaAZoCWgPQwg3OXzSidFlQJSGlFKUaBVLE2gWR0CoQWbI1cdHdX2UKGgGaAloD0MItAWE1pFHwkCUhpRSlGgVTegDaBZHQKhHyDMeOn51fZQoaAZoCWgPQwhq96sAm0fCQJSGlFKUaBVN6ANoFkdAqE14uVX3g3V9lChoBmgJaA9DCEetMH2v2G5AlIaUUpRoFUsbaBZHQKhN111W8yx1fZQoaAZoCWgPQwgNpfYiYEfCQJSGlFKUaBVN6ANoFkdAqFO4DHOryXV9lChoBmgJaA9DCJsDBHOGR8JAlIaUUpRoFU3oA2gWR0CoWkWc8TzvdX2UKGgGaAloD0MIU7Exr6lHwkCUhpRSlGgVTegDaBZHQKhgSGY8dPt1fZQoaAZoCWgPQwhglKC/0PtfQJSGlFKUaBVLDmgWR0CoYFp1aGHpdX2UKGgGaAloD0MIwDxkyq9HwkCUhpRSlGgVTegDaBZHQKhmVnHNorZ1fZQoaAZoCWgPQwjdRC3NeUfCQJSGlFKUaBVN6ANoFkdAqGzszXSSeXV9lChoBmgJaA9DCKOutferR8JAlIaUUpRoFU3oA2gWR0CoczKTbFjvdX2UKGgGaAloD0MIuVLPglCLY0CUhpRSlGgVSxFoFkdAqHNIWWQfZHV9lChoBmgJaA9DCFYOLbKpR8JAlIaUUpRoFU3oA2gWR0CoeUDDbah6dX2UKGgGaAloD0MIa0lHOYhHwkCUhpRSlGgVTegDaBZHQKh/mYgJTl11fZQoaAZoCWgPQwjoZ+p1eUfCQJSGlFKUaBVN6ANoFkdAqIXAf8uSOnV9lChoBmgJaA9DCJwWvOiXR8JAlIaUUpRoFU3oA2gWR0Coi37KRuCPdX2UKGgGaAloD0MICHb8F7jLlkCUhpRSlGgVS51oFkdAqIxvWrfce3V9lChoBmgJaA9DCBwnhXn9RsJAlIaUUpRoFU3oA2gWR0CokqSHM2WIdX2UKGgGaAloD0MInYU97VRGwkCUhpRSlGgVTegDaBZHQKiZL1jAi3Z1fZQoaAZoCWgPQwgJ+3YSaUfCQJSGlFKUaBVN6ANoFkdAqJ+DzPKMenV9lChoBmgJaA9DCC+jWG4RR8JAlIaUUpRoFU3oA2gWR0CopXEJjUd8dWUu"
|
82 |
+
},
|
83 |
+
"ep_success_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
+
},
|
87 |
+
"_n_updates": 78130,
|
88 |
+
"n_steps": 128,
|
89 |
+
"gamma": 0.98,
|
90 |
+
"gae_lambda": 0.8,
|
91 |
+
"ent_coef": 1.05057e-06,
|
92 |
+
"vf_coef": 0.695929,
|
93 |
+
"max_grad_norm": 0.5,
|
94 |
+
"batch_size": 512,
|
95 |
+
"n_epochs": 10,
|
96 |
+
"clip_range": {
|
97 |
+
":type:": "<class 'function'>",
|
98 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL3FnYWxsb3VlZGVjL2Vudl9iZW5jaG1hcmsvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9xZ2FsbG91ZWRlYy9lbnZfYmVuY2htYXJrL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/ZmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
99 |
+
},
|
100 |
+
"clip_range_vf": null,
|
101 |
+
"normalize_advantage": true,
|
102 |
+
"target_kl": null
|
103 |
+
}
|
ppo-InvertedDoublePendulum-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a22555f092393563b89a1e2cd42fb1afa070e058d76dea76858fe47d2d91f39
|
3 |
+
size 90352
|
ppo-InvertedDoublePendulum-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:911670da2b73a93b1bd283256efbc4197ebf080ce21315f396f91946467ec32f
|
3 |
+
size 44414
|
ppo-InvertedDoublePendulum-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-InvertedDoublePendulum-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e927b9d61e0550feb19093e1474d940de389c083f890e9587ff46d04be41713a
|
3 |
+
size 83630
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 9357.9487567, "std_reward": 0.8862845232667707, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T15:37:06.217145"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb5ee949c3b79819a3d5153d71e241a56fa62a88f6999cbe9e9969b5faf5d8cf
|
3 |
+
size 233364
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:12e4e4753575d811bc316f1f98414d4dc1c4805bff1ca16489e534cc5b53ed3e
|
3 |
+
size 4425
|