Quentin Gallouédec
commited on
Commit
·
c686e68
1
Parent(s):
4097056
Initial commit
Browse files- .gitattributes +1 -0
- README.md +85 -0
- args.yml +83 -0
- config.yml +36 -0
- env_kwargs.yml +1 -0
- ppo-Walker2DBulletEnv-v0.zip +3 -0
- ppo-Walker2DBulletEnv-v0/_stable_baselines3_version +1 -0
- ppo-Walker2DBulletEnv-v0/data +119 -0
- ppo-Walker2DBulletEnv-v0/policy.optimizer.pth +3 -0
- ppo-Walker2DBulletEnv-v0/policy.pth +3 -0
- ppo-Walker2DBulletEnv-v0/pytorch_variables.pth +3 -0
- ppo-Walker2DBulletEnv-v0/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Walker2DBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Walker2DBulletEnv-v0
|
16 |
+
type: Walker2DBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2547.56 +/- 13.19
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **Walker2DBulletEnv-v0**
|
25 |
+
This is a trained model of a **PPO** agent playing **Walker2DBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env Walker2DBulletEnv-v0 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo ppo --env Walker2DBulletEnv-v0 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo ppo --env Walker2DBulletEnv-v0 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo ppo --env Walker2DBulletEnv-v0 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo ppo --env Walker2DBulletEnv-v0 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo ppo --env Walker2DBulletEnv-v0 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 128),
|
66 |
+
('clip_range', 'lin_0.4'),
|
67 |
+
('ent_coef', 0.0),
|
68 |
+
('gae_lambda', 0.9),
|
69 |
+
('gamma', 0.99),
|
70 |
+
('learning_rate', 3e-05),
|
71 |
+
('max_grad_norm', 0.5),
|
72 |
+
('n_envs', 16),
|
73 |
+
('n_epochs', 20),
|
74 |
+
('n_steps', 512),
|
75 |
+
('n_timesteps', 2000000.0),
|
76 |
+
('normalize', True),
|
77 |
+
('policy', 'MlpPolicy'),
|
78 |
+
('policy_kwargs',
|
79 |
+
'dict(log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, '
|
80 |
+
'net_arch=dict(pi=[256, 256], vf=[256, 256]) )'),
|
81 |
+
('sde_sample_freq', 4),
|
82 |
+
('use_sde', True),
|
83 |
+
('vf_coef', 0.5),
|
84 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
85 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- ppo
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- Walker2DBulletEnv-v0
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 20
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 5
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 2326884128
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/Walker2DBulletEnv-v0__ppo__2326884128__1676780237
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- openrlbenchmark
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 128
|
4 |
+
- - clip_range
|
5 |
+
- lin_0.4
|
6 |
+
- - ent_coef
|
7 |
+
- 0.0
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.9
|
10 |
+
- - gamma
|
11 |
+
- 0.99
|
12 |
+
- - learning_rate
|
13 |
+
- 3.0e-05
|
14 |
+
- - max_grad_norm
|
15 |
+
- 0.5
|
16 |
+
- - n_envs
|
17 |
+
- 16
|
18 |
+
- - n_epochs
|
19 |
+
- 20
|
20 |
+
- - n_steps
|
21 |
+
- 512
|
22 |
+
- - n_timesteps
|
23 |
+
- 2000000.0
|
24 |
+
- - normalize
|
25 |
+
- true
|
26 |
+
- - policy
|
27 |
+
- MlpPolicy
|
28 |
+
- - policy_kwargs
|
29 |
+
- dict(log_std_init=-2, ortho_init=False, activation_fn=nn.ReLU, net_arch=dict(pi=[256,
|
30 |
+
256], vf=[256, 256]) )
|
31 |
+
- - sde_sample_freq
|
32 |
+
- 4
|
33 |
+
- - use_sde
|
34 |
+
- true
|
35 |
+
- - vf_coef
|
36 |
+
- 0.5
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
ppo-Walker2DBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:37daf9901774c861e031266c11556f60886ee3c4f4af7bbd0b5f90e4a957967f
|
3 |
+
size 1797904
|
ppo-Walker2DBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
ppo-Walker2DBulletEnv-v0/data
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f28d8d92ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f28d8d92f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f28d8d94040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f28d8d940d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f28d8d94160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f28d8d941f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f28d8d94280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f28d8d94310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f28d8d943a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f28d8d94430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f28d8d944c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f28d8d94550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f28d9480dc0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWViwAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA1hY3RpdmF0aW9uX2ZulIwbdG9yY2gubm4ubW9kdWxlcy5hY3RpdmF0aW9ulIwEUmVMVZSTlIwIbmV0X2FyY2iUfZQojAJwaZRdlChNAAFNAAFljAJ2ZpRdlChNAAFNAAFldXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"activation_fn": "<class 'torch.nn.modules.activation.ReLU'>",
|
29 |
+
"net_arch": {
|
30 |
+
"pi": [
|
31 |
+
256,
|
32 |
+
256
|
33 |
+
],
|
34 |
+
"vf": [
|
35 |
+
256,
|
36 |
+
256
|
37 |
+
]
|
38 |
+
}
|
39 |
+
},
|
40 |
+
"observation_space": {
|
41 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
42 |
+
":serialized:": "gAWVMQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxaFlIwBQ5R0lFKUjARoaWdolGgTKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLFoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLFoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
43 |
+
"dtype": "float32",
|
44 |
+
"_shape": [
|
45 |
+
22
|
46 |
+
],
|
47 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]",
|
48 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]",
|
49 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
|
50 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
|
51 |
+
"_np_random": null
|
52 |
+
},
|
53 |
+
"action_space": {
|
54 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
55 |
+
":serialized:": "gAWVPAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUjAFDlHSUUpSMBGhpZ2iUaBMolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwaFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYGAAAAAAAAAAEBAQEBAZRoIksGhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
56 |
+
"dtype": "float32",
|
57 |
+
"_shape": [
|
58 |
+
6
|
59 |
+
],
|
60 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
61 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
62 |
+
"bounded_below": "[ True True True True True True]",
|
63 |
+
"bounded_above": "[ True True True True True True]",
|
64 |
+
"_np_random": "RandomState(MT19937)"
|
65 |
+
},
|
66 |
+
"n_envs": 1,
|
67 |
+
"num_timesteps": 2007040,
|
68 |
+
"_total_timesteps": 2000000,
|
69 |
+
"_num_timesteps_at_start": 0,
|
70 |
+
"seed": 0,
|
71 |
+
"action_noise": null,
|
72 |
+
"start_time": 1676780239512698923,
|
73 |
+
"learning_rate": {
|
74 |
+
":type:": "<class 'function'>",
|
75 |
+
":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3Avc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPv91EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
76 |
+
},
|
77 |
+
"tensorboard_log": "runs/Walker2DBulletEnv-v0__ppo__2326884128__1676780237/Walker2DBulletEnv-v0",
|
78 |
+
"lr_schedule": {
|
79 |
+
":type:": "<class 'function'>",
|
80 |
+
":serialized:": "gAWV5QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMWS9ncGZzZHN3b3JrL3Byb2plY3RzL3JlY2gvdWxpL3VwZjgyc3Avc3RhYmxlLWJhc2VsaW5lczMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxZL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9zdGFibGUtYmFzZWxpbmVzMy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPv91EE1VHWmFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
81 |
+
},
|
82 |
+
"_last_obs": null,
|
83 |
+
"_last_episode_starts": {
|
84 |
+
":type:": "<class 'numpy.ndarray'>",
|
85 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAEAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
86 |
+
},
|
87 |
+
"_last_original_obs": {
|
88 |
+
":type:": "<class 'numpy.ndarray'>",
|
89 |
+
":serialized:": "gAWV9QUAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaABQAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhkmAPwAAAACoFoY/AAAAACfX+zwAAAAAVa6BPwAAAAAz1YA/AAAAAN9JmL0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgEd0eT8AAAAAwwVzPwAAAABFy429AAAAAJBghj8AAAAAOxp3PwAAAABsaIQ9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAK6IY/AAAAAHq4hj8AAAAA/WGVPQAAAABuy3A/AAAAAO9ocj8AAAAACW5yPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAXtKFPwAAAAAWAIM/AAAAAKeC9b0AAAAAfpB4PwAAAACvTIQ/AAAAAFJUPL0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOsFhT8AAAAAW0KDPwAAAADBl+G9AAAAAA6wgj8AAAAAx+WGPwAAAABWTNI9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICiaoI/AAAAAK7QfT8AAAAA5ul/vAAAAADlP3c/AAAAAJQdgz8AAAAASebuvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAhqdyPwAAAAD/I3Y/AAAAANQiID0AAAAAVH10PwAAAABE5IQ/AAAAAH3arj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgLE1cz8AAAAA2QBwPwAAAABCtsS9AAAAAIg4bz8AAAAALHdvPwAAAAB90aA8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDpRXo/AAAAAC96bT8AAAAAnkJ7OgAAAABTO4A/AAAAAKjvgD8AAAAAHj+gvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA+P6HPwAAAAAvGYk/AAAAAIg9VT0AAAAAXaeDPwAAAADmRnQ/AAAAADj1oj0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgKUFhT8AAAAA/o97PwAAAAD7/pg8AAAAAIWOhj8AAAAAFsB4PwAAAADQWoy9AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAy14g/AAAAAAr1bT8AAAAAoalhPQAAAADsjm8/AAAAAH6/iT8AAAAAJ+zrvAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACA2Wh5PwAAAAAww4c/AAAAADyHnL0AAAAAFCiJPwAAAABEUIc/AAAAAMJguz0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgFC6fD8AAAAAS3GJPwAAAACUF2C9AAAAAGA+gD8AAAAAzHKBPwAAAACYb+O8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBTdHw/AAAAAM+rgj8AAAAAnA77PQAAAACZGYM/AAAAALBDhz8AAAAAHoOkPQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeH2FPwAAAACUdYE/AAAAAEAwYj0AAAAAE+p7PwAAAAABAnE/AAAAAMQd1j0AAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSxBLFoaUjAFDlHSUUpQu"
|
90 |
+
},
|
91 |
+
"_episode_num": 0,
|
92 |
+
"use_sde": true,
|
93 |
+
"sde_sample_freq": 4,
|
94 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
95 |
+
"ep_info_buffer": {
|
96 |
+
":type:": "<class 'collections.deque'>",
|
97 |
+
":serialized:": "gAWVMgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKLV2SamXPaMAWyUTegDjAF0lEdAv6OReOXE63V9lChoBkdAohSempEQXmgHTegDaAhHQL+kfvTPSlZ1fZQoaAZHQEkiJiy6cy5oB0s8aAhHQL+k3rylN111fZQoaAZHQE/a8U21lXloB0s3aAhHQL+mEUzKs+51fZQoaAZHQKH5RNsWO6xoB03oA2gIR0C/pp3jU/fPdX2UKGgGR0AqEmNzbN8maAdLD2gIR0C/pvHsTnJUdX2UKGgGR0BCBBClabF1aAdLLWgIR0C/pwvqcEvCdX2UKGgGR0CiRfMRHww1aAdN6ANoCEdAv6uj2ugYg3V9lChoBkdAokq8x0uDjGgHTegDaAhHQL+6qlabF0h1fZQoaAZHQKI4+aw2VFBoB03oA2gIR0C/uuqshgVodX2UKGgGR0CiJYAlv60qaAdN6ANoCEdAv7smE/Spi3V9lChoBkdAV8vKT0QK8mgHS0RoCEdAv7xlr8BMjHV9lChoBkdAouIV5dGAkWgHTegDaAhHQL+8+7+T/yZ1fZQoaAZHQKKwXDGcWj5oB03oA2gIR0C/vkQ/TspodX2UKGgGR0Ci/rRx95QhaAdN6ANoCEdAv8DhMoMKC3V9lChoBkdAordu7jDKo2gHTegDaAhHQL/ClH31zyV1fZQoaAZHQIBUnluFYdRoB00aAWgIR0C/wyG5c1O1dX2UKGgGR0Cih7o+OfdzaAdN6ANoCEdAv8NWMdcSoXV9lChoBkdAmiYrh3qzJWgHTcgCaAhHQL/EoB2fTTh1fZQoaAZHQKJkV5Qgs9VoB03oA2gIR0C/xKvk/8l5dX2UKGgGR0CirFrmQr+YaAdN6ANoCEdAv/G0JiRW93V9lChoBkdAoqXEzMzMzWgHTegDaAhHQL/xxfvWpZR1fZQoaAZHQKKdmu5BkZtoB03oA2gIR0C/8pRvvSc9dX2UKGgGR0BTG4DxLCemaAdLS2gIR0C/8q/gR9PUdX2UKGgGR0CihhNpEhJRaAdN6ANoCEdAv/TG7FsHjnV9lChoBkdAorQdrGipN2gHTegDaAhHQL/3PbYbsGB1fZQoaAZHQIkrn5WRzRxoB02RAWgIR0C/+ntO2y9mdX2UKGgGR0Ci4Dxj8UEgaAdN6ANoCEdAv/v9WMju8nV9lChoBkdAopMll9SdfGgHTegDaAhHQMAFi7WEsat1fZQoaAZHQKKA3sabWmRoB03oA2gIR0DABcnjU/fPdX2UKGgGR0CiiDSqMm4RaAdN6ANoCEdAwAZrA8jiXXV9lChoBkdAigrZN47ihmgHTW4BaAhHQMAGtZTho/R1fZQoaAZHQEtOhOgxrSFoB0staAhHQMAG6RplBhR1fZQoaAZHQEYerIYFaB9oB0smaAhHQMAHUu1v2oN1fZQoaAZHQKKIMpvxYq5oB03oA2gIR0DAB1rGcWj5dX2UKGgGR0CiRzwL3K0VaAdN6ANoCEdAwAir9Vmz0HV9lChoBkdAovQoI+nqFGgHTegDaAhHQMAJhdSuQp51fZQoaAZHQKKiuUj9n9NoB03oA2gIR0DACcy4UeuFdX2UKGgGR0Cii5w1JlJ6aAdN6ANoCEdAwAnnUXHim3V9lChoBkdAolz7vAoG6mgHTegDaAhHQMAKk3pfQa91fZQoaAZHQDJFHqeK8+RoB0sSaAhHQMAKxied07t1fZQoaAZHQKHw4elsP8RoB03oA2gIR0DACuwxagVXdX2UKGgGR0Ci6L1M23rlaAdN6ANoCEdAwBJm5U96knV9lChoBkdAotnDpaA4GWgHTegDaAhHQMASdIUi6hB1fZQoaAZHQGNmpQcghbJoB0tgaAhHQMATDXMINVl1fZQoaAZHQCqcH6dlNDdoB0sQaAhHQMATOiUPhAJ1fZQoaAZHQKKgSNrj5sVoB03oA2gIR0DAE3/KU3XJdX2UKGgGR0CNCzMoMKCyaAdNlgFoCEdAwBVSeYD1XnV9lChoBkdAmWjdfPX05GgHTbYCaAhHQMAVYwgcLjR1fZQoaAZHQKJrZqoqCpZoB03oA2gIR0DAFlfKW9lFdX2UKGgGR0Cil7eyJKraaAdN6ANoCEdAwBcW/M4cWHV9lChoBkdAhrLJtBOYY2gHTVABaAhHQMAXKQmE5AB1fZQoaAZHQKKJh5MURFtoB03oA2gIR0DAF5A8jiXIdX2UKGgGR0CiyvmD+R5kaAdN6ANoCEdAwB7iVNYbKnV9lChoBkdAa5su/UONHmgHS31oCEdAwC8gpBHCoHV9lChoBkdAoeyuyzHCGmgHTegDaAhHQMAviYYixFB1fZQoaAZHQKJ0y5eZ5RloB03oA2gIR0DAL5F6zE75dX2UKGgGR0CiI3FHjIaMaAdN6ANoCEdAwDDiIZZSvXV9lChoBkdAba6qxTsIFGgHS4doCEdAwDELO8kD6nV9lChoBkdAoh9+5OJtSGgHTegDaAhHQMAxuhHTZxt1fZQoaAZHQKHHlHktEohoB03oA2gIR0DAMhtk+X7cdX2UKGgGR0Ciny7gCOm0aAdN6ANoCEdAwDL6/h2nsXV9lChoBkdAmio/n0TURWgHTcQCaAhHQMAzQjHfdh11fZQoaAZHQKJhea3qiXZoB03oA2gIR0DAM4gM2FWXdX2UKGgGR0CidZMgU1yeaAdN6ANoCEdAwDqpNX5nDnV9lChoBkdAoX41dNWU8mgHTegDaAhHQMA7b6QV9F51fZQoaAZHQIz2GoYNy5toB02aAWgIR0DAPHPo9s7/dX2UKGgGR0CI6O1pCa7VaAdNcwFoCEdAwDzf4u9OAXV9lChoBkdAokwEmY0EYGgHTegDaAhHQMA9mJL/S6V1fZQoaAZHQKHaVD4xk/doB03oA2gIR0DAPo+lImPYdX2UKGgGR0Cik8iZv1lHaAdN6ANoCEdAwD9QQnx8UnV9lChoBkdAonit3Y+SsGgHTegDaAhHQMA/Yi6H0sh1fZQoaAZHQKI+SscQyyloB03oA2gIR0DAQAcGmk30dX2UKGgGR0CisHmr0aqCaAdN6ANoCEdAwEg01Cw8n3V9lChoBkdAonDQ0bcXWWgHTegDaAhHQMBInawMYuV1fZQoaAZHQKKqeeMhouhoB03oA2gIR0DASh4GOdXldX2UKGgGR0Cik9GL9/BnaAdN6ANoCEdAwEst3JxNqXV9lChoBkdAojGO0JF9a2gHTegDaAhHQMBMC4Fiay91fZQoaAZHQKI5mY/FBIFoB03oA2gIR0DATFKlgtvodX2UKGgGR0Ci0MLwOOKgaAdN6ANoCEdAwEyYS8J2MnV9lChoBkdAoqtwHJLdvmgHTegDaAhHQMBMperuIAR1fZQoaAZHQKKTQxFiKBNoB03oA2gIR0DAY6a2x6fKdX2UKGgGR0CRBRf3evZAaAdN3wFoCEdAwGQVWvr4WXV9lChoBkdAoiSo2qDK5mgHTegDaAhHQMBkrCPhhph1fZQoaAZHQKLeLinYQJ5oB03oA2gIR0DAZRf+KjzqdX2UKGgGR0BkmW+23KB/aAdLcGgIR0DAZU5DohZAdX2UKGgGR0CihpB86V+raAdN6ANoCEdAwGXQeHSF5HV9lChoBkdAYOImY0EX+GgHS1xoCEdAwGYZS1E3KnV9lChoBkdAkdy3gk1MumgHTR8CaAhHQMBmSTollbx1fZQoaAZHQIS6ABxPwd9oB004AWgIR0DAZktBD5TIdX2UKGgGR0A+pvs7dSEUaAdLI2gIR0DAZnuFN+LFdX2UKGgGR0AxfaoddVvNaAdLE2gIR0DAZrDKYAsDdX2UKGgGR0CijVNp/PPcaAdN6ANoCEdAwGbHxm03O3V9lChoBkdAjn0kU9IPLGgHTaQBaAhHQMBm4QBxPwd1fZQoaAZHQKLHZzxwyZdoB03oA2gIR0DAZ4kpqh11dX2UKGgGR0Cil23TVlPKaAdN6ANoCEdAwGebWn0kGHV9lChoBkdAkTYeRT0g82gHTeEBaAhHQMBoGV94NZx1fZQoaAZHQKJ65guyu6poB03oA2gIR0DAaEDGcWj5dX2UKGgGR0BbTUqQRwqBaAdLSmgIR0DAaGwfnwG4dX2UKGgGR0CYI1V5a/yoaAdNmwJoCEdAwGi5SpiqhnVlLg=="
|
98 |
+
},
|
99 |
+
"ep_success_buffer": {
|
100 |
+
":type:": "<class 'collections.deque'>",
|
101 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
102 |
+
},
|
103 |
+
"_n_updates": 4900,
|
104 |
+
"n_steps": 512,
|
105 |
+
"gamma": 0.99,
|
106 |
+
"gae_lambda": 0.9,
|
107 |
+
"ent_coef": 0.0,
|
108 |
+
"vf_coef": 0.5,
|
109 |
+
"max_grad_norm": 0.5,
|
110 |
+
"batch_size": 128,
|
111 |
+
"n_epochs": 20,
|
112 |
+
"clip_range": {
|
113 |
+
":type:": "<class 'function'>",
|
114 |
+
":serialized:": "gAWVhAMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL2dwZnNkc3dvcmsvcHJvamVjdHMvcmVjaC91bGkvdXBmODJzcC9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lIwEZnVuY5RNJQFDAgAGlIwOaW5pdGlhbF92YWx1ZV+UhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjEgvZ3Bmc2Rzd29yay9wcm9qZWN0cy9yZWNoL3VsaS91cGY4MnNwL3JsLWJhc2VsaW5lczMtem9vL3JsX3pvbzMvdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwdbGluZWFyX3NjaGVkdWxlLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQojBJwcm9ncmVzc19yZW1haW5pbmeUjAhidWlsdGluc5SMBWZsb2F0lJOUjAZyZXR1cm6UaC11jA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5RoCYwLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP9mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
115 |
+
},
|
116 |
+
"clip_range_vf": null,
|
117 |
+
"normalize_advantage": true,
|
118 |
+
"target_kl": null
|
119 |
+
}
|
ppo-Walker2DBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cdcfff5858f0dcfd26fb8aaa4f38f5a00f00bbe9129c1097e97d2eedcb7b2ae
|
3 |
+
size 1184048
|
ppo-Walker2DBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb8ad9dae81e76a782720e61f0b9ba89fa4fcb203a2f453eaf87ae6db2d18520
|
3 |
+
size 591230
|
ppo-Walker2DBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-Walker2DBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8ad4ff6a82416e4bdbd2ba3eb5ac251de160490bf21f584ebeba265253ae686
|
3 |
+
size 1107821
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2547.5559668, "std_reward": 13.18701428533549, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T19:28:13.522230"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4eb1c88e7cc449598ea8839681a9c86a5edc289315c1a5ad713923acf5a925e6
|
3 |
+
size 212360
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:02194817a7162e5e9ebd6944e8febe66ad1707da56f365b65c05b2b818aa3f64
|
3 |
+
size 6064
|