Quentin Gallouédec commited on
Commit
a015f72
·
1 Parent(s): b834f15

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Pendulum-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TD3
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Pendulum-v1
16
+ type: Pendulum-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -179.42 +/- 104.08
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TD3** Agent playing **Pendulum-v1**
25
+ This is a trained model of a **TD3** agent playing **Pendulum-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo td3 --env Pendulum-v1 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo td3 --env Pendulum-v1 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo td3 --env Pendulum-v1 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo td3 --env Pendulum-v1 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo td3 --env Pendulum-v1 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo td3 --env Pendulum-v1 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('buffer_size', 200000),
66
+ ('gamma', 0.98),
67
+ ('gradient_steps', -1),
68
+ ('learning_rate', 0.001),
69
+ ('learning_starts', 10000),
70
+ ('n_timesteps', 20000),
71
+ ('noise_std', 0.1),
72
+ ('noise_type', 'normal'),
73
+ ('policy', 'MlpPolicy'),
74
+ ('policy_kwargs', 'dict(net_arch=[400, 300])'),
75
+ ('train_freq', [1, 'episode']),
76
+ ('normalize', False)])
77
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - td3
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Pendulum-v1
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 2563443305
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/Pendulum-v1__td3__2563443305__1672251664
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - buffer_size
3
+ - 200000
4
+ - - gamma
5
+ - 0.98
6
+ - - gradient_steps
7
+ - -1
8
+ - - learning_rate
9
+ - 0.001
10
+ - - learning_starts
11
+ - 10000
12
+ - - n_timesteps
13
+ - 20000
14
+ - - noise_std
15
+ - 0.1
16
+ - - noise_type
17
+ - normal
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(net_arch=[400, 300])
22
+ - - train_freq
23
+ - - 1
24
+ - episode
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e1c277044371586b7d25134d85d29e42964a0073dd66b4933523576c932c5fb
3
+ size 116832
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -179.42351519999997, "std_reward": 104.08491315716162, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T16:29:46.488907"}
td3-Pendulum-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab2cc62399a90e8dd7d5beeb65cef3c8f36081898202560054a126e926130176
3
+ size 5925559
td3-Pendulum-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
td3-Pendulum-v1/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0edf6d3837d561aec0bca06764359cdcdcce3c991a9241b2d726430916d090c4
3
+ size 982447
td3-Pendulum-v1/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59042e5997951e8fc325d8a191a4bef48d7ef1829112e09c49bad855e0cfe7ed
3
+ size 1971001
td3-Pendulum-v1/data ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TD3Policy.__init__ at 0x7f5a881ee940>",
8
+ "_build": "<function TD3Policy._build at 0x7f5a881ee9d0>",
9
+ "_get_constructor_parameters": "<function TD3Policy._get_constructor_parameters at 0x7f5a881eea60>",
10
+ "make_actor": "<function TD3Policy.make_actor at 0x7f5a881eeaf0>",
11
+ "make_critic": "<function TD3Policy.make_critic at 0x7f5a881eeb80>",
12
+ "forward": "<function TD3Policy.forward at 0x7f5a881eec10>",
13
+ "_predict": "<function TD3Policy._predict at 0x7f5a881eeca0>",
14
+ "set_training_mode": "<function TD3Policy.set_training_mode at 0x7f5a881eed30>",
15
+ "__abstractmethods__": "frozenset()",
16
+ "_abc_impl": "<_abc._abc_data object at 0x7f5a881f0f00>"
17
+ },
18
+ "verbose": 1,
19
+ "policy_kwargs": {
20
+ "net_arch": [
21
+ 400,
22
+ 300
23
+ ]
24
+ },
25
+ "observation_space": {
26
+ ":type:": "<class 'gym.spaces.box.Box'>",
27
+ ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
28
+ "dtype": "float32",
29
+ "_shape": [
30
+ 3
31
+ ],
32
+ "low": "[-1. -1. -8.]",
33
+ "high": "[1. 1. 8.]",
34
+ "bounded_below": "[ True True True]",
35
+ "bounded_above": "[ True True True]",
36
+ "_np_random": null
37
+ },
38
+ "action_space": {
39
+ ":type:": "<class 'gym.spaces.box.Box'>",
40
+ ":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
41
+ "dtype": "float32",
42
+ "_shape": [
43
+ 1
44
+ ],
45
+ "low": "[-2.]",
46
+ "high": "[2.]",
47
+ "bounded_below": "[ True]",
48
+ "bounded_above": "[ True]",
49
+ "_np_random": "RandomState(MT19937)"
50
+ },
51
+ "n_envs": 1,
52
+ "num_timesteps": 20000,
53
+ "_total_timesteps": 20000,
54
+ "_num_timesteps_at_start": 0,
55
+ "seed": 0,
56
+ "action_noise": {
57
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
58
+ ":serialized:": "gAWV6gAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAYWUjAFDlHSUUpSMBl9zaWdtYZRoCCiWCAAAAAAAAACamZmZmZm5P5RoD0sBhZRoE3SUUpR1Yi4=",
59
+ "_mu": "[0.]",
60
+ "_sigma": "[0.1]"
61
+ },
62
+ "start_time": 1672251666945220397,
63
+ "learning_rate": {
64
+ ":type:": "<class 'function'>",
65
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
66
+ },
67
+ "tensorboard_log": "runs/Pendulum-v1__td3__2563443305__1672251664/Pendulum-v1",
68
+ "lr_schedule": {
69
+ ":type:": "<class 'function'>",
70
+ ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
71
+ },
72
+ "_last_obs": null,
73
+ "_last_episode_starts": {
74
+ ":type:": "<class 'numpy.ndarray'>",
75
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
76
+ },
77
+ "_last_original_obs": {
78
+ ":type:": "<class 'numpy.ndarray'>",
79
+ ":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAML+fz/a48m70wfbO5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
80
+ },
81
+ "_episode_num": 100,
82
+ "use_sde": false,
83
+ "sde_sample_freq": -1,
84
+ "_current_progress_remaining": 0.0,
85
+ "ep_info_buffer": {
86
+ ":type:": "<class 'collections.deque'>",
87
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIVrjlI6mrkMCUhpRSlIwBbJRLyIwBdJRHP+xvddmg8KZ1fZQoaAZoCWgPQwh+5NakW/aLwJSGlFKUaBVLyGgWRz/tXq7iADq4dX2UKGgGaAloD0MIUWhZ9//Wk8CUhpRSlGgVS8hoFkc/7k2FWXC0nnV9lChoBmgJaA9DCMCuJk95DZTAlIaUUpRoFUvIaBZHP+88NhE0BOp1fZQoaAZoCWgPQwhRweEFsVmbwJSGlFKUaBVLyGgWRz/wGQbMottidX2UKGgGaAloD0MITGw+ro1VksCUhpRSlGgVS8hoFkc/8I8IRh+fAnV9lChoBmgJaA9DCATltn2PJY7AlIaUUpRoFUvIaBZHP/EFUADJU5x1fZQoaAZoCWgPQwg5Kcx7fNKWwJSGlFKUaBVLyGgWRz/xe76Hj6vadX2UKGgGaAloD0MIWKzhIgfUksCUhpRSlGgVS8hoFkc/8fOzIFNcnnV9lChoBmgJaA9DCADICRMWOJTAlIaUUpRoFUvIaBZHP/Jpr1uivgZ1fZQoaAZoCWgPQwgK16NwbT6QwJSGlFKUaBVLyGgWRz/y35N47ihndX2UKGgGaAloD0MIsFQX8HI0lsCUhpRSlGgVS8hoFkc/81WzWwu/UXV9lChoBmgJaA9DCOOkMO9BEZjAlIaUUpRoFUvIaBZHP/PNWEK3NLV1fZQoaAZoCWgPQwg42Qbu0LGQwJSGlFKUaBVLyGgWRz/0QrDqGDcudX2UKGgGaAloD0MIV1wcldvOk8CUhpRSlGgVS8hoFkc/9LgsK9f1H3V9lChoBmgJaA9DCB3KUBWTK5XAlIaUUpRoFUvIaBZHP/Ut8/lhgE51fZQoaAZoCWgPQwjnqKPjOrWQwJSGlFKUaBVLyGgWRz/1pjH4oJAudX2UKGgGaAloD0MIMe9xpqlkisCUhpRSlGgVS8hoFkc/9hxBE8aGYnV9lChoBmgJaA9DCJnU0Abg2JnAlIaUUpRoFUvIaBZHP/aR+BpYcNp1fZQoaAZoCWgPQwi+wRcmw7aQwJSGlFKUaBVLyGgWRz/3B9Tgl4TsdX2UKGgGaAloD0MIP8QGC+eYkMCUhpRSlGgVS8hoFkc/93/Ot4iX6nV9lChoBmgJaA9DCBwJNNhUgIvAlIaUUpRoFUvIaBZHP/f1TisGPgh1fZQoaAZoCWgPQwg5e2e0JSmawJSGlFKUaBVLyGgWRz/4av3ai9IxdX2UKGgGaAloD0MIPDHrxTAilMCUhpRSlGgVS8hoFkc/+OBwuM+/xnV9lChoBmgJaA9DCIohOZk4O5XAlIaUUpRoFUvIaBZHP/lYlpoK2KF1fZQoaAZoCWgPQwh39SoyevKLwJSGlFKUaBVLyGgWRz/5zriVB2OidX2UKGgGaAloD0MIBkfJq3OQm8CUhpRSlGgVS8hoFkc/+kRxtHhCMXV9lChoBmgJaA9DCG/1nPR+W5TAlIaUUpRoFUvIaBZHP/q6I3zcynF1fZQoaAZoCWgPQwjcf2Q61NGGwJSGlFKUaBVLyGgWRz/7Mlsxfv4NdX2UKGgGaAloD0MIzjl4JkRLkcCUhpRSlGgVS8hoFkc/+6iKziS7oXV9lChoBmgJaA9DCGHEPgGUo47AlIaUUpRoFUvIaBZHP/we18b70nR1fZQoaAZoCWgPQwiWI2Qg75GHwJSGlFKUaBVLyGgWRz/8lKTSsr/bdX2UKGgGaAloD0MIg/bq47HIkMCUhpRSlGgVS8hoFkc//QzuWrwOOXV9lChoBmgJaA9DCH3KMVlclZrAlIaUUpRoFUvIaBZHP/2C2tuDSPV1fZQoaAZoCWgPQwjZ6Qd1QTCUwJSGlFKUaBVLyGgWRz/9+OCGvfTDdX2UKGgGaAloD0MICKpGrxbOlMCUhpRSlGgVS8hoFkc//m704BFNL3V9lChoBmgJaA9DCB1YjpAh94vAlIaUUpRoFUvIaBZHP/7m/nGKhtd1fZQoaAZoCWgPQwgTZW8pZ4WXwJSGlFKUaBVLyGgWRz//XOKO1fE5dX2UKGgGaAloD0MIf4XMlfHXlsCUhpRSlGgVS8hoFkc//9LRKHwgDHV9lChoBmgJaA9DCEYkCi0r35jAlIaUUpRoFUvIaBZHQAAkGA08/2V1fZQoaAZoCWgPQwiKBil4Sr2KwJSGlFKUaBVLyGgWR0AAYFcIJJGwdX2UKGgGaAloD0MIBi0kYERrmsCUhpRSlGgVS8hoFkdAAJt/nW8RMHV9lChoBmgJaA9DCHNlUG1w75DAlIaUUpRoFUvIaBZHQADWom5UcXF1fZQoaAZoCWgPQwg4h2u157iZwJSGlFKUaBVLyGgWR0ABEadc0LtvdX2UKGgGaAloD0MIWd5VD3hGj8CUhpRSlGgVS8hoFkdAAU3WnTAnD3V9lChoBmgJaA9DCMRcUrXdDprAlIaUUpRoFUvIaBZHQAGI2XLNfPZ1fZQoaAZoCWgPQwi+oIUETE6RwJSGlFKUaBVLyGgWR0ABw/cFhXr/dX2UKGgGaAloD0MIgZNt4O6kkMCUhpRSlGgVS8hoFkdAAf8rI5o4/HV9lChoBmgJaA9DCEEqxY4m34vAlIaUUpRoFUvIaBZHQAI7lA/s3Q51fZQoaAZoCWgPQwhiaksdBKOZwJSGlFKUaBVLyGgWR0ACdrVOKwY+dX2UKGgGaAloD0MIdxA7UyhmksCUhpRSlGgVS8hoFkdABPRu0kWyknV9lChoBmgJaA9DCMIU5dK46pzAlIaUUpRoFUvIaBZHQAuTGYKIBR11fZQoaAZoCWgPQwgF3PP8SYCdwJSGlFKUaBVLyGgWR0ARCUB4lhPTdX2UKGgGaAloD0MItKz7xwLAl8CUhpRSlGgVS8hoFkdAFD4PPLPldXV9lChoBmgJaA9DCJELzuBvAJfAlIaUUpRoFUvIaBZHQBdxvegte2N1fZQoaAZoCWgPQwjRPlbwq72XwJSGlFKUaBVLyGgWR0AapQuVX3g2dX2UKGgGaAloD0MIxOi5hW73l8CUhpRSlGgVS8hoFkdAHdmICU5dW3V9lChoBmgJaA9DCM6njlVqq5TAlIaUUpRoFUvIaBZHQCCGV/tpmEp1fZQoaAZoCWgPQwgsEaj+od2SwJSGlFKUaBVLyGgWR0AiIHLRrrPddX2UKGgGaAloD0MIHmtGBjkCk8CUhpRSlGgVS8hoFkdAI7mWD6Fds3V9lChoBmgJaA9DCNLgtrYw8pPAlIaUUpRoFUvIaBZHQCVU7CBPKuB1fZQoaAZoCWgPQwh2xCEbqM2LwJSGlFKUaBVLyGgWR0Am7YjB2wFDdX2UKGgGaAloD0MIDfyohs0DkcCUhpRSlGgVS8hoFkdAKIaZpi7TUnV9lChoBmgJaA9DCM/AyMsq4JDAlIaUUpRoFUvIaBZHQCofzOHFglZ1fZQoaAZoCWgPQwhAahMn9/WJwJSGlFKUaBVLyGgWR0Artw6QvHtGdX2UKGgGaAloD0MIqDej5iu7jMCUhpRSlGgVS8hoFkdALUzEBKcurnV9lChoBmgJaA9DCOYivhMTI47AlIaUUpRoFUvIaBZHQC7idUbT+eh1fZQoaAZoCWgPQwg+6xotd5+XwJSGlFKUaBVLyGgWR0AwPAd4mkWRdX2UKGgGaAloD0MIFY21v7OkecCUhpRSlGgVS8hoFkdAMQd4RmK64HV9lChoBmgJaA9DCPim6bNjIYHAlIaUUpRoFUvIaBZHQDHSKEWZZ0V1fZQoaAZoCWgPQwgiUtMuplkEwJSGlFKUaBVLyGgWR0AynULDye7MdX2UKGgGaAloD0MInu3RG+4KcMCUhpRSlGgVS8hoFkdAM2lQl8gIQnV9lChoBmgJaA9DCCOGHcYkE2DAlIaUUpRoFUvIaBZHQDQ1nmJWNm11fZQoaAZoCWgPQwjuXBjpxbdgwJSGlFKUaBVLyGgWR0A1Apyp71IzdX2UKGgGaAloD0MIatlaX+RYccCUhpRSlGgVS8hoFkdANc+YUnG83HV9lChoBmgJaA9DCM3LYffdk3DAlIaUUpRoFUvIaBZHQDacQHzH0bt1fZQoaAZoCWgPQwi+Ed2zLud1wJSGlFKUaBVLyGgWR0A3aRjBl+VkdX2UKGgGaAloD0MIU0Da/wC8X8CUhpRSlGgVS8hoFkdAODWRaHKwIXV9lChoBmgJaA9DCFVrYRYa23bAlIaUUpRoFUvIaBZHQDkCrgflp491fZQoaAZoCWgPQwhl/PuMy5p1wJSGlFKUaBVLyGgWR0A5z2FFlTWHdX2UKGgGaAloD0MIQmDl0CL7EsCUhpRSlGgVS8hoFkdAOpxOP/7zkXV9lChoBmgJaA9DCGw/GeNDJnHAlIaUUpRoFUvIaBZHQDtoWykbgj11fZQoaAZoCWgPQwieYP91bhxfwJSGlFKUaBVLyGgWR0A8NLPD50r9dX2UKGgGaAloD0MIlnhA2ZStX8CUhpRSlGgVS8hoFkdAPQHh0hePaXV9lChoBmgJaA9DCHWQ14NJL3fAlIaUUpRoFUvIaBZHQD3PJwKjSG91fZQoaAZoCWgPQwj7y+7JQytgwJSGlFKUaBVLyGgWR0A+mpG4I8hcdX2UKGgGaAloD0MIRrOyfcitX8CUhpRSlGgVS8hoFkdAP2dGy5Zr6HV9lChoBmgJaA9DCHLBGfz9EGDAlIaUUpRoFUvIaBZHQEAV/OMVDa51fZQoaAZoCWgPQwhkldIzvaRewJSGlFKUaBVLyGgWR0BAcy7GvOhTdX2UKGgGaAloD0MIi/m5oakEYMCUhpRSlGgVS8hoFkdAQNAWDYh+v3V9lChoBmgJaA9DCMXiN4UVFWDAlIaUUpRoFUvIaBZHQEEs1IiC8OF1fZQoaAZoCWgPQwhRacTMPn9dwJSGlFKUaBVLyGgWR0BBiagmJFb3dX2UKGgGaAloD0MIAiuHFlk6bcCUhpRSlGgVS8hoFkdAQebTjNpudnV9lChoBmgJaA9DCBHIJY48vG7AlIaUUpRoFUvIaBZHQEJDsMy8BdV1fZQoaAZoCWgPQwh3hNOCF1JfwJSGlFKUaBVLyGgWR0BCoJvHcUM5dX2UKGgGaAloD0MI7nw/NV66XsCUhpRSlGgVS8hoFkdAQv2YSg5BC3V9lChoBmgJaA9DCEFIFjCB2WzAlIaUUpRoFUvIaBZHQENawaBI4ER1fZQoaAZoCWgPQwiQwYpTrQXqv5SGlFKUaBVLyGgWR0BDt92X9itrdX2UKGgGaAloD0MIfLQ4Y5ipXsCUhpRSlGgVS8hoFkdARBTRUm2LHnV9lChoBmgJaA9DCLPQzmkW/13AlIaUUpRoFUvIaBZHQERxXvH93r51ZS4="
88
+ },
89
+ "ep_success_buffer": {
90
+ ":type:": "<class 'collections.deque'>",
91
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
92
+ },
93
+ "_n_updates": 10000,
94
+ "buffer_size": 1,
95
+ "batch_size": 100,
96
+ "learning_starts": 10000,
97
+ "tau": 0.005,
98
+ "gamma": 0.98,
99
+ "gradient_steps": -1,
100
+ "optimize_memory_usage": false,
101
+ "replay_buffer_class": {
102
+ ":type:": "<class 'abc.ABCMeta'>",
103
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
104
+ "__module__": "stable_baselines3.common.buffers",
105
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
106
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f5a881ea430>",
107
+ "add": "<function ReplayBuffer.add at 0x7f5a881ea4c0>",
108
+ "sample": "<function ReplayBuffer.sample at 0x7f5a881ea550>",
109
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f5a881ea5e0>",
110
+ "__abstractmethods__": "frozenset()",
111
+ "_abc_impl": "<_abc._abc_data object at 0x7f5a881e0dc0>"
112
+ },
113
+ "replay_buffer_kwargs": {},
114
+ "train_freq": {
115
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
116
+ ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"
117
+ },
118
+ "use_sde_at_warmup": false,
119
+ "policy_delay": 2,
120
+ "target_noise_clip": 0.5,
121
+ "target_policy_noise": 0.2,
122
+ "actor_batch_norm_stats": [],
123
+ "critic_batch_norm_stats": [],
124
+ "actor_batch_norm_stats_target": [],
125
+ "critic_batch_norm_stats_target": []
126
+ }
td3-Pendulum-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c74741981e69bcf77522c48bb60c517bc03d0290422f604b9344f5a513dae23
3
+ size 2951289
td3-Pendulum-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
td3-Pendulum-v1/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57cbb0745d3f92ec456d94c8588626ab04ef47c4815b2f9c47eb500bb44a845a
3
+ size 2847