{ "policy_class": { ":type:": "", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMCVREM1BvbGljeZSTlC4=", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "", "_build": "", "_get_constructor_parameters": "", "make_actor": "", "make_critic": "", "forward": "", "_predict": "", "set_training_mode": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5f75841100>" }, "verbose": 1, "policy_kwargs": {}, "observation_space": { ":type:": "", ":serialized:": "gAWVgQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWiAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSxGFlIwBQ5R0lFKUjARoaWdolGgSKJaIAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLEYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxGFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsRhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float64", "_shape": [ 17 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVNgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "dtype": "float32", "_shape": [ 6 ], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": "RandomState(MT19937)" }, "n_envs": 1, "num_timesteps": 1000285, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": { ":type:": "", ":serialized:": "gAWVOgEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwaFlIwBQ5R0lFKUjAZfc2lnbWGUaAgoljAAAAAAAAAAmpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/mpmZmZmZuT+amZmZmZm5P5qZmZmZmbk/lGgPSwaFlGgTdJRSlHViLg==", "_mu": "[0. 0. 0. 0. 0. 0.]", "_sigma": "[0.1 0.1 0.1 0.1 0.1 0.1]" }, "start_time": 1676687280592201713, "learning_rate": 0.001, "tensorboard_log": "runs/Walker2d-v3__td3__3785808537__1676687278/Walker2d-v3", "lr_schedule": { ":type:": "", ":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg==" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": { ":type:": "", ":serialized:": "gAWV/QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaIAAAAAAAAAAHJRPnM4PM/Fcgkyrj33z+MOZ4MLP+mP8Aj1ef7dpA/fcRx01qq7z90Tdz/Mn+yv3biET5I9nU/6VDbUe7e5L/maDX372MOQCwr7X8fGe4/vhYv/0/kCsAmhQYu4MvPPx8TtG2QZLQ/gI3HRaCxFMBfCebtT8YYwDX3bAKM7bo/xMHFc6pvCECUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLEYaUjAFDlHSUUpQu" }, "_episode_num": 2191, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00028500000000009074, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIp5VCIJu0sUCUhpRSlIwBbJRN6AOMAXSUR0Czqs6b4Ju3dX2UKGgGaAloD0MIt5kK8aD5r0CUhpRSlGgVTegDaBZHQLOwUBnzxw11fZQoaAZoCWgPQwiFsYUghymuQJSGlFKUaBVNiANoFkdAs7Wtc+qzaHV9lChoBmgJaA9DCJxsA3f8kLFAlIaUUpRoFU3oA2gWR0Czuqx3V09ydX2UKGgGaAloD0MIqmQAqBbvsECUhpRSlGgVTegDaBZHQLPAC6QvHtF1fZQoaAZoCWgPQwhslWBxOAOvQJSGlFKUaBVN6ANoFkdAs8W12aDwpnV9lChoBmgJaA9DCCmSrwT2qLFAlIaUUpRoFU3oA2gWR0Czy1NMwlBydX2UKGgGaAloD0MI/686cmDhsUCUhpRSlGgVTegDaBZHQLPQxNipeeF1fZQoaAZoCWgPQwi3lzRGj8SxQJSGlFKUaBVN6ANoFkdAs9ZECtA9m3V9lChoBmgJaA9DCCZSms2/1bFAlIaUUpRoFU3oA2gWR0Cz27+SwGGEdX2UKGgGaAloD0MIjbgANHLfsUCUhpRSlGgVTegDaBZHQLPhHYQJ5Vx1fZQoaAZoCWgPQwiFsBpLSF2yQJSGlFKUaBVN6ANoFkdAs+asINVinnV9lChoBmgJaA9DCPJDpREjGqBAlIaUUpRoFU0sAmgWR0Cz6+TjR2KVdX2UKGgGaAloD0MI3XniObeksUCUhpRSlGgVTegDaBZHQLPvSy2x6fJ1fZQoaAZoCWgPQwjQ7Lq3np2wQJSGlFKUaBVN6ANoFkdAs/Snqnm7rnV9lChoBmgJaA9DCL3faMehgbFAlIaUUpRoFU3oA2gWR0Cz+jCVObiIdX2UKGgGaAloD0MIe6AVGGb2sUCUhpRSlGgVTegDaBZHQLP/yMGorFx1fZQoaAZoCWgPQwgGR8mrkyiyQJSGlFKUaBVN6ANoFkdAtAU9XfZVXHV9lChoBmgJaA9DCCb752lAqLFAlIaUUpRoFU3oA2gWR0C0CjdLcsUZdX2UKGgGaAloD0MIzvxqDkQvskCUhpRSlGgVTegDaBZHQLQPosDGLk11fZQoaAZoCWgPQwjtLHqnSomxQJSGlFKUaBVN6ANoFkdAtBUPQY1pCnV9lChoBmgJaA9DCLjOv13+57FAlIaUUpRoFU3oA2gWR0C0GmowZflZdX2UKGgGaAloD0MIS1zHuO4jskCUhpRSlGgVTegDaBZHQLQgCxjriVB1fZQoaAZoCWgPQwg1zxH5LsexQJSGlFKUaBVN6ANoFkdAtCsGrXDm83V9lChoBmgJaA9DCMDN4sXig7FAlIaUUpRoFU3oA2gWR0C0MJTl5nlGdX2UKGgGaAloD0MIOdIZGLmYskCUhpRSlGgVTegDaBZHQLQ1/yS3b211fZQoaAZoCWgPQwhTymslAPixQJSGlFKUaBVN6ANoFkdAtDuvpr1ui3V9lChoBmgJaA9DCAd96e0/yLBAlIaUUpRoFU3oA2gWR0C0QTyNn5BUdX2UKGgGaAloD0MIAKlNnDimsUCUhpRSlGgVTegDaBZHQLRGzPVurIZ1fZQoaAZoCWgPQwhV2uIa/0GyQJSGlFKUaBVN6ANoFkdAtExiMwUQCnV9lChoBmgJaA9DCMkiTbyTgrFAlIaUUpRoFU3oA2gWR0C0UZuX7cfvdX2UKGgGaAloD0MIX2HB/bCxskCUhpRSlGgVTegDaBZHQLRWkC1qnFZ1fZQoaAZoCWgPQwjufD814u6xQJSGlFKUaBVN6ANoFkdAtFwQLw4KhXV9lChoBmgJaA9DCDYjg9zFintAlIaUUpRoFUumaBZHQLRhGQKrq+t1fZQoaAZoCWgPQwgpIy4AjY+xQJSGlFKUaBVN6ANoFkdAtGLQUeuFH3V9lChoBmgJaA9DCGZLVkUMgrFAlIaUUpRoFU3oA2gWR0C0aIakyk9EdX2UKGgGaAloD0MIxttKrw2Zk0CUhpRSlGgVTVMBaBZHQLRtcpS75Ed1fZQoaAZoCWgPQwhkkSbe3T6yQJSGlFKUaBVN6ANoFkdAtG/Q0BOpKnV9lChoBmgJaA9DCDJ2wkvY3rBAlIaUUpRoFU3oA2gWR0C0dTgxesxPdX2UKGgGaAloD0MIf8ADA4jHsECUhpRSlGgVTegDaBZHQLR6oakyk9F1fZQoaAZoCWgPQwh0RL5LrQmyQJSGlFKUaBVN6ANoFkdAtIARFpfx+nV9lChoBmgJaA9DCCKNCpxQDbJAlIaUUpRoFU3oA2gWR0C0hZlq33HrdX2UKGgGaAloD0MIstXllAyOsUCUhpRSlGgVTegDaBZHQLSLFU1AJLN1fZQoaAZoCWgPQwjAety3iuWxQJSGlFKUaBVN6ANoFkdAtJByThYNiHV9lChoBmgJaA9DCEj+YOB50rFAlIaUUpRoFU3oA2gWR0C0lVxzRx95dX2UKGgGaAloD0MIhH8RNHZVskCUhpRSlGgVTegDaBZHQLSbBTgEU0x1fZQoaAZoCWgPQwhYdOs1rRayQJSGlFKUaBVN6ANoFkdAtKDMQ6IWQHV9lChoBmgJaA9DCLX66qoM97FAlIaUUpRoFU3oA2gWR0C0pocdDIBBdX2UKGgGaAloD0MIfO2ZJSU1skCUhpRSlGgVTegDaBZHQLSsC6sySFJ1fZQoaAZoCWgPQwiNRdPZkVKxQJSGlFKUaBVN6ANoFkdAtLbyVopQUHV9lChoBmgJaA9DCH3O3a7jYrJAlIaUUpRoFU3oA2gWR0C0vGR+F10UdX2UKGgGaAloD0MI0sd8QLSyskCUhpRSlGgVTegDaBZHQLTB2cYIjW11fZQoaAZoCWgPQwgJM23/Wk2yQJSGlFKUaBVN6ANoFkdAtMdcV45cT3V9lChoBmgJaA9DCHO+2HuZXK1AlIaUUpRoFU0qA2gWR0C0zJrbtZ3cdX2UKGgGaAloD0MIEaj+QWCvskCUhpRSlGgVTegDaBZHQLTRG7voePt1fZQoaAZoCWgPQwgyA5XxV2OyQJSGlFKUaBVN6ANoFkdAtNakU8FINHV9lChoBmgJaA9DCElnYORpHbJAlIaUUpRoFU3oA2gWR0C03BZP/JeWdX2UKGgGaAloD0MI+PwwQuilsUCUhpRSlGgVTegDaBZHQLThgcS5AhV1fZQoaAZoCWgPQwgOZhNgyDWyQJSGlFKUaBVN6ANoFkdAtOb0GZ/kNnV9lChoBmgJaA9DCA3eV+USObJAlIaUUpRoFU3oA2gWR0C07FEVzp5edX2UKGgGaAloD0MIrfvHQniiskCUhpRSlGgVTegDaBZHQLTx2sqaw2V1fZQoaAZoCWgPQwhjR+NQo9CxQJSGlFKUaBVN6ANoFkdAtPdkFFDv3XV9lChoBmgJaA9DCGpOXmTKBLJAlIaUUpRoFU3oA2gWR0C0/Oof4h2XdX2UKGgGaAloD0MIAMgJE/KSsUCUhpRSlGgVTegDaBZHQLUCVUz9CNV1fZQoaAZoCWgPQwh720yFePqxQJSGlFKUaBVN6ANoFkdAtQeseS0SiHV9lChoBmgJaA9DCPd4IR2SYrJAlIaUUpRoFU3oA2gWR0C1DTo6Oo5xdX2UKGgGaAloD0MI6WFodb6dskCUhpRSlGgVTegDaBZHQLUS6z6rNnp1fZQoaAZoCWgPQwhSnnk5fFGyQJSGlFKUaBVN6ANoFkdAtRhiD5CWvHV9lChoBmgJaA9DCFSOyeJy1bFAlIaUUpRoFU3oA2gWR0C1HcRK6FufdX2UKGgGaAloD0MIJCh+jEH8skCUhpRSlGgVTegDaBZHQLUi7yxzJZJ1fZQoaAZoCWgPQwgJiEm4nE+xQJSGlFKUaBVN6ANoFkdAtShvor4FinV9lChoBmgJaA9DCDyE8dN8tbFAlIaUUpRoFU3oA2gWR0C1LhHAuZkTdX2UKGgGaAloD0MIYOgRow/4sECUhpRSlGgVTegDaBZHQLUzr3W4EwF1fZQoaAZoCWgPQwg6BI4Eev6yQJSGlFKUaBVN6ANoFkdAtTlEWl/H53V9lChoBmgJaA9DCDf/rzoetLJAlIaUUpRoFU3oA2gWR0C1RABdt2s8dX2UKGgGaAloD0MIFAX6ROrWskCUhpRSlGgVTegDaBZHQLVJhpdrwfB1fZQoaAZoCWgPQwjaykv+uy+yQJSGlFKUaBVN6ANoFkdAtU7x8NQTEnV9lChoBmgJaA9DCG4w1GFBCrJAlIaUUpRoFU3oA2gWR0C1VHBrJr+HdX2UKGgGaAloD0MI8PrMWduGskCUhpRSlGgVTegDaBZHQLVZkzKcNH91fZQoaAZoCWgPQwhAwjBgffyxQJSGlFKUaBVN6ANoFkdAtV6rRiPQwHV9lChoBmgJaA9DCF/U7ldZRrJAlIaUUpRoFU3oA2gWR0C1ZAGdZq20dX2UKGgGaAloD0MI6SgHs3UfskCUhpRSlGgVTegDaBZHQLVpuvWpZOl1fZQoaAZoCWgPQwgcKPBOGmuxQJSGlFKUaBVN6ANoFkdAtW9gKRdQf3V9lChoBmgJaA9DCKiMf5+59bFAlIaUUpRoFU3oA2gWR0C1dOocrAgxdX2UKGgGaAloD0MIfVhv1DqYskCUhpRSlGgVTegDaBZHQLV6ZB55Z8t1fZQoaAZoCWgPQwiPjNXmoxyzQJSGlFKUaBVN6ANoFkdAtX/6JhvzfHV9lChoBmgJaA9DCGySH/FDUbJAlIaUUpRoFU3oA2gWR0C1hX9GmUGFdX2UKGgGaAloD0MIQN1AgVeUskCUhpRSlGgVTegDaBZHQLWLQkbgjyF1fZQoaAZoCWgPQwjWyK607EWyQJSGlFKUaBVN6ANoFkdAtZC80sOG03V9lChoBmgJaA9DCGITmbkwLLJAlIaUUpRoFU3oA2gWR0C1ljR+WnjydX2UKGgGaAloD0MIotReRBcYskCUhpRSlGgVTegDaBZHQLWbrAUL2Ht1fZQoaAZoCWgPQwi78e7I8PWxQJSGlFKUaBVN6ANoFkdAtaFBMAWBSXV9lChoBmgJaA9DCIAnLVxuWbJAlIaUUpRoFU3oA2gWR0C1psZs0pEydX2UKGgGaAloD0MIs3ixMORaskCUhpRSlGgVTegDaBZHQLWr8cJ+lTF1fZQoaAZoCWgPQwjn4JnQBIqxQJSGlFKUaBVN6ANoFkdAtbFqD6Fds3V9lChoBmgJaA9DCBZqTfOu27BAlIaUUpRoFU3oA2gWR0C1tllhoduHdX2UKGgGaAloD0MIFqbvNfiWskCUhpRSlGgVTegDaBZHQLW7LZ5Rjz91fZQoaAZoCWgPQwgQkgVMZAGyQJSGlFKUaBVN6ANoFkdAtcAUW2w3YXV9lChoBmgJaA9DCHldv2CDxLFAlIaUUpRoFU3oA2gWR0C1xNogzP8idX2UKGgGaAloD0MIhNOCF9V9skCUhpRSlGgVTegDaBZHQLXOay8SPEN1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 990296, "buffer_size": 1, "batch_size": 100, "learning_starts": 10000, "tau": 0.005, "gamma": 0.99, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": { ":type:": "", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f5f752e6800>" }, "replay_buffer_kwargs": {}, "train_freq": { ":type:": "", ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu" }, "use_sde_at_warmup": false, "policy_delay": 2, "target_noise_clip": 0.5, "target_policy_noise": 0.2, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [] }