Quentin Gallouédec
Initial commit
6f40161
raw
history blame
19.5 kB
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
"__module__": "sb3_contrib.tqc.policies",
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
"__init__": "<function TQCPolicy.__init__ at 0x7fb0c9d2a670>",
"_build": "<function TQCPolicy._build at 0x7fb0c9d2a700>",
"_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7fb0c9d2a790>",
"reset_noise": "<function TQCPolicy.reset_noise at 0x7fb0c9d2a820>",
"make_actor": "<function TQCPolicy.make_actor at 0x7fb0c9d2a8b0>",
"make_critic": "<function TQCPolicy.make_critic at 0x7fb0c9d2a940>",
"forward": "<function TQCPolicy.forward at 0x7fb0c9d2a9d0>",
"_predict": "<function TQCPolicy._predict at 0x7fb0c9d2aa60>",
"set_training_mode": "<function TQCPolicy.set_training_mode at 0x7fb0c9d2aaf0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fb0c9d27fc0>"
},
"verbose": 1,
"policy_kwargs": {
"use_sde": false
},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVgQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLEYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWiAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSxGFlIwBQ5R0lFKUjARoaWdolGgSKJaIAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLEYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYRAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxGFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWEQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoIUsRhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
"dtype": "float64",
"_shape": [
17
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False False False False False\n False False False False False]",
"bounded_above": "[False False False False False False False False False False False False\n False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVNgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLYwUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
"dtype": "float32",
"_shape": [
6
],
"low": "[-1. -1. -1. -1. -1. -1.]",
"high": "[1. 1. 1. 1. 1. 1.]",
"bounded_below": "[ True True True True True True]",
"bounded_above": "[ True True True True True True]",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 1000000,
"_total_timesteps": 1000000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": null,
"start_time": 1676102000743976123,
"learning_rate": 0.0003,
"tensorboard_log": "runs/HalfCheetah-v3__tqc__1797172188__1676101996/HalfCheetah-v3",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWV/QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaIAAAAAAAAAODLDqtno5e/tCNj44dHcL8Owv7kEuLjPzyT6Crrhdc/mgOOtP47uD8YphhnoXniv+/BSOE+Nca/7mN24c/9w78MrnUVACcjQHFkRHFuReq/Zp+fGAR2BEDQAkGuYeAdQGR81vDofRdAXEDzGFq33j/SyHe+q804wI5kUO7s1CPAF/ocoM00JsCUjAVudW1weZSMBWR0eXBllJOUjAJmOJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLEYaUjAFDlHSUUpQu"
},
"_episode_num": 1000,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIQSjv486ZxUCUhpRSlIwBbJRN6AOMAXSUR0DbeuhsP8Q7dX2UKGgGaAloD0MI5E7pYO33xUCUhpRSlGgVTegDaBZHQNuCyaGYa5x1fZQoaAZoCWgPQwikiAyrEpvGQJSGlFKUaBVN6ANoFkdA24qhlP8AJnV9lChoBmgJaA9DCKMfDad4NsZAlIaUUpRoFU3oA2gWR0DbknXQPZqVdX2UKGgGaAloD0MIiSZQxOJPxkCUhpRSlGgVTegDaBZHQNuZXS7oSth1fZQoaAZoCWgPQwi/DMaIJBnGQJSGlFKUaBVN6ANoFkdA26E1j2BatHV9lChoBmgJaA9DCNgsl42y/sVAlIaUUpRoFU3oA2gWR0DbqRqDnNgSdX2UKGgGaAloD0MI8wGBzrh5xkCUhpRSlGgVTegDaBZHQNuxFld9lVd1fZQoaAZoCWgPQwhu2/eol+DFQJSGlFKUaBVN6ANoFkdA27kRnhsImnV9lChoBmgJaA9DCAfr/xxuucZAlIaUUpRoFU3oA2gWR0DbwIUDU3GXdX2UKGgGaAloD0MIqcDJNkR9xkCUhpRSlGgVTegDaBZHQNvH5VtXPqt1fZQoaAZoCWgPQwi8Bn3po3vGQJSGlFKUaBVN6ANoFkdA28/GKE3843V9lChoBmgJaA9DCBxAv++3e8VAlIaUUpRoFU3oA2gWR0Db1uWCI1tPdX2UKGgGaAloD0MIacU3FFrMxkCUhpRSlGgVTegDaBZHQNvdZXlXA/N1fZQoaAZoCWgPQwjnGJC9vKrGQJSGlFKUaBVN6ANoFkdA2+StkFwDNnV9lChoBmgJaA9DCF6ezhXVZMZAlIaUUpRoFU3oA2gWR0Db7H2Zof0VdX2UKGgGaAloD0MI0A1N2ZP8xUCUhpRSlGgVTegDaBZHQNv0aUC/47B1fZQoaAZoCWgPQwi7fsFu8NXGQJSGlFKUaBVN6ANoFkdA2/wqs2NvO3V9lChoBmgJaA9DCHOiXYV2W8ZAlIaUUpRoFU3oA2gWR0DcBBlcKPXDdX2UKGgGaAloD0MI/WZiulIsxkCUhpRSlGgVTegDaBZHQNwMDeqzZ6F1fZQoaAZoCWgPQwiVDWsqO5XGQJSGlFKUaBVN6ANoFkdA3BQDIvrWy3V9lChoBmgJaA9DCOKReHkel8ZAlIaUUpRoFU3oA2gWR0DcG+NG9YfXdX2UKGgGaAloD0MIRS3NrcTRxkCUhpRSlGgVTegDaBZHQNwi+z6vaDh1fZQoaAZoCWgPQwhoWIy6hsrFQJSGlFKUaBVN6ANoFkdA3Cq5bwSamXV9lChoBmgJaA9DCD7NyYt+2cVAlIaUUpRoFU3oA2gWR0DcMqOZ4Oc2dX2UKGgGaAloD0MIxr5k46HixkCUhpRSlGgVTegDaBZHQNw+77RBu4x1fZQoaAZoCWgPQwhAw5s1ipXGQJSGlFKUaBVN6ANoFkdA3EbfTVUdaXV9lChoBmgJaA9DCMUdb/KFbsZAlIaUUpRoFU3oA2gWR0DcTqfxhDw6dX2UKGgGaAloD0MIklm9w3HfsUCUhpRSlGgVTegDaBZHQNxVkpm7J4l1fZQoaAZoCWgPQwgaahSSdHLGQJSGlFKUaBVN6ANoFkdA3FwdJdB0IXV9lChoBmgJaA9DCD7MXrYDF8ZAlIaUUpRoFU3oA2gWR0DcYqFzIV/MdX2UKGgGaAloD0MIeEfGau9nxkCUhpRSlGgVTegDaBZHQNxqcJgLJCB1fZQoaAZoCWgPQwin6bMDnonGQJSGlFKUaBVN6ANoFkdA3HJTx2jfvXV9lChoBmgJaA9DCD/h7NayXMZAlIaUUpRoFU3oA2gWR0DcelE1rIo3dX2UKGgGaAloD0MIEAh0JjlfxUCUhpRSlGgVTegDaBZHQNyCP/PgNw11fZQoaAZoCWgPQwjkEkceol/GQJSGlFKUaBVN6ANoFkdA3Iorq814xHV9lChoBmgJaA9DCKGEmbZXyMZAlIaUUpRoFU3oA2gWR0DckgVXeWOZdX2UKGgGaAloD0MIP8kdNp0txkCUhpRSlGgVTegDaBZHQNyZ6Ng4Otp1fZQoaAZoCWgPQwgTLXk8B/XGQJSGlFKUaBVN6ANoFkdA3KHJeGfwqnV9lChoBmgJaA9DCFUUr7Lwj8ZAlIaUUpRoFU3oA2gWR0Dcqby5Zr57dX2UKGgGaAloD0MIxlIkXwtNxkCUhpRSlGgVTegDaBZHQNyxl+SB9Th1fZQoaAZoCWgPQwi8XMR3GoHGQJSGlFKUaBVN6ANoFkdA3LlydYnv2HV9lChoBmgJaA9DCN+/eXGwEsdAlIaUUpRoFU3oA2gWR0DcwWeLR8c/dX2UKGgGaAloD0MIU8+CUIRQxkCUhpRSlGgVTegDaBZHQNzJTB3/xUh1fZQoaAZoCWgPQwh5d2SsIq7GQJSGlFKUaBVN6ANoFkdA3NEv5SFXaXV9lChoBmgJaA9DCAAfvHbLBcdAlIaUUpRoFU3oA2gWR0Dc2Rt7KJVKdX2UKGgGaAloD0MI+glntzD0xUCUhpRSlGgVTegDaBZHQNzhBGxD9fl1fZQoaAZoCWgPQwgrTyDsMmTHQJSGlFKUaBVN6ANoFkdA3OghT/yXlnV9lChoBmgJaA9DCGMNF7lrMcZAlIaUUpRoFU3oA2gWR0Dc72SagElmdX2UKGgGaAloD0MIQN8WLL+VxkCUhpRSlGgVTegDaBZHQNz3RoFJQLx1fZQoaAZoCWgPQwh1P6cgFd3FQJSGlFKUaBVN6ANoFkdA3QOCqsU7CHV9lChoBmgJaA9DCKSqCaKUzsZAlIaUUpRoFU3oA2gWR0DdC1umUGFBdX2UKGgGaAloD0MIOiLfpaZwxkCUhpRSlGgVTegDaBZHQN0TKI7FKkF1fZQoaAZoCWgPQwgLf4Y36bXGQJSGlFKUaBVN6ANoFkdA3RrCA5aNdnV9lChoBmgJaA9DCNmUK7yBHMdAlIaUUpRoFU3oA2gWR0DdIkLtG/etdX2UKGgGaAloD0MIejVAaeb8xkCUhpRSlGgVTegDaBZHQN0pdl1SwW51fZQoaAZoCWgPQwjkSdI1j6LGQJSGlFKUaBVN6ANoFkdA3TBu0/4ZdnV9lChoBmgJaA9DCMcS1saAw8ZAlIaUUpRoFU3oA2gWR0DdOFRbC79RdX2UKGgGaAloD0MIrFj8ploox0CUhpRSlGgVTegDaBZHQN1AOr4vexh1fZQoaAZoCWgPQwgebRyxvInGQJSGlFKUaBVN6ANoFkdA3Ugfe6I3znV9lChoBmgJaA9DCA4UeCdpsMZAlIaUUpRoFU3oA2gWR0DdT/4/OdGzdX2UKGgGaAloD0MIwvaTMRLgxkCUhpRSlGgVTegDaBZHQN1X7FCCz1N1fZQoaAZoCWgPQwgjvD0IW7rGQJSGlFKUaBVN6ANoFkdA3V/HPYFqz3V9lChoBmgJaA9DCG+BBMW3jcZAlIaUUpRoFU3oA2gWR0DdZ6xQAMlUdX2UKGgGaAloD0MIZfz7jLN/xkCUhpRSlGgVTegDaBZHQN1ve23nZCh1fZQoaAZoCWgPQwjQ8dHidGnHQJSGlFKUaBVN6ANoFkdA3XbaKKYRd3V9lChoBmgJaA9DCCDQmbThuMZAlIaUUpRoFU3oA2gWR0DdfpHq3VkMdX2UKGgGaAloD0MIzO80mSVOxkCUhpRSlGgVTegDaBZHQN2GfnQdCE91fZQoaAZoCWgPQwiwHYzYjXrGQJSGlFKUaBVN6ANoFkdA3Y5rAnUlRnV9lChoBmgJaA9DCGgJMgKOh8ZAlIaUUpRoFU3oA2gWR0DdlkLrLQokdX2UKGgGaAloD0MIQpjbvWYbx0CUhpRSlGgVTegDaBZHQN2eF4tg8bJ1fZQoaAZoCWgPQwh40VeQDC7CQJSGlFKUaBVN6ANoFkdA3aX6ysCDEnV9lChoBmgJaA9DCPVm1Hy3QMZAlIaUUpRoFU3oA2gWR0DdrdLueBhAdX2UKGgGaAloD0MIIhyz7EMax0CUhpRSlGgVTegDaBZHQN205mfXf651fZQoaAZoCWgPQwgng6PkQQbHQJSGlFKUaBVN6ANoFkdA3bywVea8YnV9lChoBmgJaA9DCP5kjA8NbsZAlIaUUpRoFU3oA2gWR0DdyQDNMXabdX2UKGgGaAloD0MIaK8+HjA0x0CUhpRSlGgVTegDaBZHQN3Q9JnHvMN1fZQoaAZoCWgPQwhyMnGrtDnGQJSGlFKUaBVN6ANoFkdA3djSR5C4SnV9lChoBmgJaA9DCK36XG09FsdAlIaUUpRoFU3oA2gWR0Dd4BFuqFRHdX2UKGgGaAloD0MIvady2rmqxkCUhpRSlGgVTegDaBZHQN3n0Nl/Yrd1fZQoaAZoCWgPQwhOXmQCQv7FQJSGlFKUaBVN6ANoFkdA3e/FpjMFEHV9lChoBmgJaA9DCGRd3EaNs8ZAlIaUUpRoFU3oA2gWR0Dd9pzW8RL9dX2UKGgGaAloD0MI001iEGRNxkCUhpRSlGgVTegDaBZHQN39ucUIsy11fZQoaAZoCWgPQwjx1Y7iTLrGQJSGlFKUaBVN6ANoFkdA3gUwROUMX3V9lChoBmgJaA9DCAso1NPR3sZAlIaUUpRoFU3oA2gWR0DeDNMgfU4JdX2UKGgGaAloD0MIpFLsaDxax0CUhpRSlGgVTegDaBZHQN4UtUTURWd1fZQoaAZoCWgPQwi+MJkq6KjGQJSGlFKUaBVN6ANoFkdA3hyl10T103V9lChoBmgJaA9DCFiut82MssZAlIaUUpRoFU3oA2gWR0DeJIu9HtngdX2UKGgGaAloD0MIdavnpDETx0CUhpRSlGgVTegDaBZHQN4sXqpgkTp1fZQoaAZoCWgPQwjh8e1dsVrHQJSGlFKUaBVN6ANoFkdA3jQ+HxBmgHV9lChoBmgJaA9DCKWD9X98G8ZAlIaUUpRoFU3oA2gWR0DePDOnl4kedX2UKGgGaAloD0MId9uF5u7oxkCUhpRSlGgVTegDaBZHQN5EEyCFsYV1fZQoaAZoCWgPQwj8xAH0wVXGQJSGlFKUaBVN6ANoFkdA3kv/7SRbKXV9lChoBmgJaA9DCNvAHah1ucZAlIaUUpRoFU3oA2gWR0DeU+cCnxaxdX2UKGgGaAloD0MIXwt6b7atxkCUhpRSlGgVTegDaBZHQN5bxUjopx51fZQoaAZoCWgPQwg7qwX2+CbHQJSGlFKUaBVN6ANoFkdA3mOXvSMLnnV9lChoBmgJaA9DCJhRLLfiIcdAlIaUUpRoFU3oA2gWR0Dea2Vf2K2sdX2UKGgGaAloD0MI4gZ8fhKzxkCUhpRSlGgVTegDaBZHQN5zVdwaR6p1fZQoaAZoCWgPQwhUGjGztfTGQJSGlFKUaBVN6ANoFkdA3nsPxvNu+HV9lChoBmgJaA9DCGx7uyUjWsZAlIaUUpRoFU3oA2gWR0Degjker+5wdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 990000,
"buffer_size": 1,
"batch_size": 256,
"learning_starts": 10000,
"tau": 0.005,
"gamma": 0.99,
"gradient_steps": 1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
"__module__": "stable_baselines3.common.buffers",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x7fb0c9f2e5e0>",
"add": "<function ReplayBuffer.add at 0x7fb0c9f2e670>",
"sample": "<function ReplayBuffer.sample at 0x7fb0c9f2e700>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fb0c9f2e790>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7fb0c9f26640>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
},
"use_sde_at_warmup": false,
"target_entropy": -6.0,
"ent_coef": "auto",
"target_update_interval": 1,
"top_quantiles_to_drop_per_net": 2,
"batch_norm_stats": [],
"batch_norm_stats_target": []
}