Quentin Gallouédec
commited on
Commit
·
ac61bac
1
Parent(s):
898ebab
Initial commit
Browse files- .gitattributes +1 -0
- README.md +79 -0
- args.yml +83 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- trpo-Swimmer-v3.zip +3 -0
- trpo-Swimmer-v3/_stable_baselines3_version +1 -0
- trpo-Swimmer-v3/data +103 -0
- trpo-Swimmer-v3/policy.optimizer.pth +3 -0
- trpo-Swimmer-v3/policy.pth +3 -0
- trpo-Swimmer-v3/pytorch_variables.pth +3 -0
- trpo-Swimmer-v3/system_info.txt +7 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Swimmer-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TRPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Swimmer-v3
|
16 |
+
type: Swimmer-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 361.63 +/- 0.84
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TRPO** Agent playing **Swimmer-v3**
|
25 |
+
This is a trained model of a **TRPO** agent playing **Swimmer-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo trpo --env Swimmer-v3 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo trpo --env Swimmer-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo trpo --env Swimmer-v3 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo trpo --env Swimmer-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo trpo --env Swimmer-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo trpo --env Swimmer-v3 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 128),
|
66 |
+
('cg_damping', 0.1),
|
67 |
+
('cg_max_steps', 25),
|
68 |
+
('gae_lambda', 0.95),
|
69 |
+
('gamma', 0.9999),
|
70 |
+
('learning_rate', 0.001),
|
71 |
+
('n_critic_updates', 20),
|
72 |
+
('n_envs', 2),
|
73 |
+
('n_steps', 1024),
|
74 |
+
('n_timesteps', 1000000.0),
|
75 |
+
('normalize', True),
|
76 |
+
('policy', 'MlpPolicy'),
|
77 |
+
('sub_sampling_factor', 1),
|
78 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
79 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- trpo
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- Swimmer-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 20
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 5
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 1721833506
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/Swimmer-v3__trpo__1721833506__1676718729
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- openrlbenchmark
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - wandb_tags
|
81 |
+
- []
|
82 |
+
- - yaml_file
|
83 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 128
|
4 |
+
- - cg_damping
|
5 |
+
- 0.1
|
6 |
+
- - cg_max_steps
|
7 |
+
- 25
|
8 |
+
- - gae_lambda
|
9 |
+
- 0.95
|
10 |
+
- - gamma
|
11 |
+
- 0.9999
|
12 |
+
- - learning_rate
|
13 |
+
- 0.001
|
14 |
+
- - n_critic_updates
|
15 |
+
- 20
|
16 |
+
- - n_envs
|
17 |
+
- 2
|
18 |
+
- - n_steps
|
19 |
+
- 1024
|
20 |
+
- - n_timesteps
|
21 |
+
- 1000000.0
|
22 |
+
- - normalize
|
23 |
+
- true
|
24 |
+
- - policy
|
25 |
+
- MlpPolicy
|
26 |
+
- - sub_sampling_factor
|
27 |
+
- 1
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53c0478e6a18f968be04bdb2b3dc2bc4dd1d44daca5ee9135e94143dc44d31c0
|
3 |
+
size 1298483
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 361.6335136, "std_reward": 0.8376385862100878, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T16:24:19.323422"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33f3cde5dfaacc1507d71b7e143449f5066c21400f2d9acbd5ee1fc6b5ff2513
|
3 |
+
size 42553
|
trpo-Swimmer-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fc3374bff8f0cf51c9e12324b4294d98ea7cf5ddd164457d8369a7c5b9418c7
|
3 |
+
size 106327
|
trpo-Swimmer-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
trpo-Swimmer-v3/data
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ffa4ded3ee0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ffa4ded3f70>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ffa4ded5040>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ffa4ded50d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ffa4ded5160>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ffa4ded51f0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ffa4ded5280>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ffa4ded5310>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ffa4ded53a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ffa4ded5430>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ffa4ded54c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ffa4ded5550>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ffa4ded4780>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWV3wEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWQAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJZAAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLCIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYIAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwiFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCAAAAAAAAAAAAAAAAAAAAJRoIUsIhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
27 |
+
"dtype": "float64",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
39 |
+
":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
40 |
+
"dtype": "float32",
|
41 |
+
"_shape": [
|
42 |
+
2
|
43 |
+
],
|
44 |
+
"low": "[-1. -1.]",
|
45 |
+
"high": "[1. 1.]",
|
46 |
+
"bounded_below": "[ True True]",
|
47 |
+
"bounded_above": "[ True True]",
|
48 |
+
"_np_random": "RandomState(MT19937)"
|
49 |
+
},
|
50 |
+
"n_envs": 1,
|
51 |
+
"num_timesteps": 1001472,
|
52 |
+
"_total_timesteps": 1000000,
|
53 |
+
"_num_timesteps_at_start": 0,
|
54 |
+
"seed": 0,
|
55 |
+
"action_noise": null,
|
56 |
+
"start_time": 1676718732928296993,
|
57 |
+
"learning_rate": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWVdwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
60 |
+
},
|
61 |
+
"tensorboard_log": "runs/Swimmer-v3__trpo__1721833506__1676718729/Swimmer-v3",
|
62 |
+
"lr_schedule": {
|
63 |
+
":type:": "<class 'function'>",
|
64 |
+
":serialized:": "gAWVdwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
65 |
+
},
|
66 |
+
"_last_obs": null,
|
67 |
+
"_last_episode_starts": {
|
68 |
+
":type:": "<class 'numpy.ndarray'>",
|
69 |
+
":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
|
70 |
+
},
|
71 |
+
"_last_original_obs": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAKRA3w7k0Le/hIQI0VLRoD8MnudAnfeUvzdlMzPPcKm/JMgwTh47rj+tAgo2JA6qv1Tn5PQnDaK/RL2g1tYauL/3MAmRBQWsv1rc54cRH7Y/ROhaW7s2tL/A0G2oo4NaP/QnRKf8/pY/jizzN8r5sj90OIggcC2zP3gIVAXy97E/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksCSwiGlIwBQ5R0lFKULg=="
|
74 |
+
},
|
75 |
+
"_episode_num": 0,
|
76 |
+
"use_sde": false,
|
77 |
+
"sde_sample_freq": -1,
|
78 |
+
"_current_progress_remaining": -0.0014719999999999178,
|
79 |
+
"ep_info_buffer": {
|
80 |
+
":type:": "<class 'collections.deque'>",
|
81 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMEs7NVfGdkCUhpRSlIwBbJRN6AOMAXSUR0CdBgVR1oxpdX2UKGgGaAloD0MIs3kcBnOVdkCUhpRSlGgVTegDaBZHQJ0F/wqiGnJ1fZQoaAZoCWgPQwiLic3HNb92QJSGlFKUaBVN6ANoFkdAnRSyjQAuI3V9lChoBmgJaA9DCFyv6UGBnXZAlIaUUpRoFU3oA2gWR0CdFKxCY1HfdX2UKGgGaAloD0MIwK+RJIi5dkCUhpRSlGgVTegDaBZHQJ0kLwb2lEZ1fZQoaAZoCWgPQwjYmxiSU6Z2QJSGlFKUaBVN6ANoFkdAnSQovi97GHV9lChoBmgJaA9DCMU7wJNWmnZAlIaUUpRoFU3oA2gWR0CdM7tyPuG9dX2UKGgGaAloD0MIIqrwZziydkCUhpRSlGgVTegDaBZHQJ0ztS4vvjR1fZQoaAZoCWgPQwhW9fI7zYB2QJSGlFKUaBVN6ANoFkdAnUFnTy8SPHV9lChoBmgJaA9DCLd7uU8Oq3ZAlIaUUpRoFU3oA2gWR0CdQWEG7jDLdX2UKGgGaAloD0MIXeLIAxGFdkCUhpRSlGgVTegDaBZHQJ1P9DKHO8l1fZQoaAZoCWgPQwj8q8d967t2QJSGlFKUaBVN6ANoFkdAnU/t7F85S3V9lChoBmgJaA9DCJ5g/3XuhnZAlIaUUpRoFU3oA2gWR0CdXzO6unuRdX2UKGgGaAloD0MIa2EW2vmhdkCUhpRSlGgVTegDaBZHQJ1fLX6InBt1fZQoaAZoCWgPQwheMLjmTr92QJSGlFKUaBVN6ANoFkdAnW3bSRbKR3V9lChoBmgJaA9DCLt+wW5YnHZAlIaUUpRoFU3oA2gWR0CdbdUDMeOodX2UKGgGaAloD0MILzatFEKkdkCUhpRSlGgVTegDaBZHQJ161N+LFXJ1fZQoaAZoCWgPQwjt8NdkjXd2QJSGlFKUaBVN6ANoFkdAnXrOmixmkHV9lChoBmgJaA9DCK/sgsG1o3ZAlIaUUpRoFU3oA2gWR0CdiONA1NxmdX2UKGgGaAloD0MIR+hn6vWDdkCUhpRSlGgVTegDaBZHQJ2I3Pomoit1fZQoaAZoCWgPQwjE0OrkDKl2QJSGlFKUaBVN6ANoFkdAnZfSE6DGtXV9lChoBmgJaA9DCC5yT1c3fXZAlIaUUpRoFU3oA2gWR0Cdl8vIOpbVdX2UKGgGaAloD0MIkZighi+RdkCUhpRSlGgVTegDaBZHQJ2nady1eBx1fZQoaAZoCWgPQwh3n+OjhY92QJSGlFKUaBVN6ANoFkdAnadj1f3N93V9lChoBmgJaA9DCLqe6LrwjnZAlIaUUpRoFU3oA2gWR0Cd0Wmz0HyFdX2UKGgGaAloD0MIjfFh9rJ7dkCUhpRSlGgVTegDaBZHQJ3RY2qDK5l1fZQoaAZoCWgPQwjxZaIIaXZ2QJSGlFKUaBVN6ANoFkdAneEwJgLJCHV9lChoBmgJaA9DCE8iwr/Ir3ZAlIaUUpRoFU3oA2gWR0Cd4SnfVI7OdX2UKGgGaAloD0MI6rKY2PyBdkCUhpRSlGgVTegDaBZHQJ3v1p/PPcB1fZQoaAZoCWgPQwgPCd/72412QJSGlFKUaBVN6ANoFkdAne/QWBSUDHV9lChoBmgJaA9DCLZoAdpWYHZAlIaUUpRoFU3oA2gWR0Cd/ZvBacI7dX2UKGgGaAloD0MI2spL/ududkCUhpRSlGgVTegDaBZHQJ39lX2dupF1fZQoaAZoCWgPQwjTFtf4TGx2QJSGlFKUaBVN6ANoFkdAngrOs90RvnV9lChoBmgJaA9DCMueBDYnwHZAlIaUUpRoFU3oA2gWR0CeCshpxm03dX2UKGgGaAloD0MI1sVtNMB5dkCUhpRSlGgVTegDaBZHQJ4aMPmPo3d1fZQoaAZoCWgPQwjMtWgBGpd2QJSGlFKUaBVN6ANoFkdAnhoqtga3qnV9lChoBmgJaA9DCLN6h9vho3ZAlIaUUpRoFU3oA2gWR0CeKOMxXXAedX2UKGgGaAloD0MIvMlv0UlWdkCUhpRSlGgVTegDaBZHQJ4o3Ov+wTx1fZQoaAZoCWgPQwgOSphpe7J2QJSGlFKUaBVN6ANoFkdAnjI2gOBlMHV9lChoBmgJaA9DCERSCyWTX3ZAlIaUUpRoFU3oA2gWR0CeMjA2hqTKdX2UKGgGaAloD0MIYymSrwScdkCUhpRSlGgVTegDaBZHQJ5AgzUI9kl1fZQoaAZoCWgPQwijlBCsqqB2QJSGlFKUaBVN6ANoFkdAnkB87IT4+XV9lChoBmgJaA9DCI0Mchehk3ZAlIaUUpRoFU3oA2gWR0CeTf+tKZlWdX2UKGgGaAloD0MIPNo4Ym2VdkCUhpRSlGgVTegDaBZHQJ5N+WNWEK51fZQoaAZoCWgPQwisrdhfdq12QJSGlFKUaBVN6ANoFkdAnlzPfO2RaHV9lChoBmgJaA9DCEbOwp42lnZAlIaUUpRoFU3oA2gWR0CeXMk2P1cudX2UKGgGaAloD0MIknajj7midkCUhpRSlGgVTegDaBZHQJ5sJRXOnl51fZQoaAZoCWgPQwh7Lei98V92QJSGlFKUaBVN6ANoFkdAnmwe0b961XV9lChoBmgJaA9DCGNCzCUVjHZAlIaUUpRoFU3oA2gWR0Ceezrmhdt3dX2UKGgGaAloD0MIEeSghNmrdkCUhpRSlGgVTegDaBZHQJ57NKDkELZ1fZQoaAZoCWgPQwgMBWwHY5p2QJSGlFKUaBVN6ANoFkdAnqTnuE25x3V9lChoBmgJaA9DCGSV0jO9f3ZAlIaUUpRoFU3oA2gWR0CepOFvAGjcdX2UKGgGaAloD0MI5IOezeqadkCUhpRSlGgVTegDaBZHQJ60bNcGC7N1fZQoaAZoCWgPQwhU4GQbeNB2QJSGlFKUaBVN6ANoFkdAnrRmixmkFnV9lChoBmgJaA9DCM1y2ehcqXZAlIaUUpRoFU3oA2gWR0Cew8ovi97GdX2UKGgGaAloD0MI58WJr/aadkCUhpRSlGgVTegDaBZHQJ7Dw+Y+jdp1fZQoaAZoCWgPQwgVqMXgYbB2QJSGlFKUaBVN6ANoFkdAntI8aCL/CXV9lChoBmgJaA9DCNAKDFldl3ZAlIaUUpRoFU3oA2gWR0Ce0jYcebNKdX2UKGgGaAloD0MITraBO5CMdkCUhpRSlGgVTegDaBZHQJ7g0qZtvXN1fZQoaAZoCWgPQwhGC9C2Gpx2QJSGlFKUaBVN6ANoFkdAnuDMXaakRHV9lChoBmgJaA9DCGDoEaOnf3ZAlIaUUpRoFU3oA2gWR0Ce7olCkXUIdX2UKGgGaAloD0MIjup0IOtodkCUhpRSlGgVTegDaBZHQJ7ugvg3tKJ1fZQoaAZoCWgPQwi6ZvLNtqV2QJSGlFKUaBVN6ANoFkdAnv1Irz5GjXV9lChoBmgJaA9DCAYq49/nsHZAlIaUUpRoFU3oA2gWR0Ce/UJp35erdX2UKGgGaAloD0MIVpv/Vx1/dkCUhpRSlGgVTegDaBZHQJ8MqpyZKFt1fZQoaAZoCWgPQwijrUoi+5x2QJSGlFKUaBVN6ANoFkdAnwykUTL4e3V9lChoBmgJaA9DCOPHmLvWq3ZAlIaUUpRoFU3oA2gWR0CfG6C9AX2vdX2UKGgGaAloD0MI58dfWlSUdkCUhpRSlGgVTegDaBZHQJ8bmnJkoWp1fZQoaAZoCWgPQwifWn11VbF2QJSGlFKUaBVN6ANoFkdAnygXlCCz1XV9lChoBmgJaA9DCDc10HxOvXZAlIaUUpRoFU3oA2gWR0CfKBFN+LFXdX2UKGgGaAloD0MImfG20uuddkCUhpRSlGgVTegDaBZHQJ83X0/W1+l1fZQoaAZoCWgPQwgDCvX0kbR2QJSGlFKUaBVN6ANoFkdAnzdZBHCoCXV9lChoBmgJaA9DCF36l6QypHZAlIaUUpRoFU3oA2gWR0CfRjUtqYZ3dX2UKGgGaAloD0MII2dhTzu4dkCUhpRSlGgVTegDaBZHQJ9GLuZ1FH91fZQoaAZoCWgPQwgUBmUazbp2QJSGlFKUaBVN6ANoFkdAn2/0HUtqYnV9lChoBmgJaA9DCI83+S06rXZAlIaUUpRoFU3oA2gWR0Cfb+3T/hl2dX2UKGgGaAloD0MIiQj/IqiQdkCUhpRSlGgVTegDaBZHQJ9+9RFZxJd1fZQoaAZoCWgPQwh1dcdiG8R2QJSGlFKUaBVN6ANoFkdAn37ux8lXzXV9lChoBmgJaA9DCM7drpcmp3ZAlIaUUpRoFU3oA2gWR0CfjutCRfWudX2UKGgGaAloD0MIQiRDjm2YdkCUhpRSlGgVTegDaBZHQJ+O5PtUn5V1fZQoaAZoCWgPQwjyRBDnIYV2QJSGlFKUaBVN6ANoFkdAn52SuMdcS3V9lChoBmgJaA9DCNJwytw8enZAlIaUUpRoFU3oA2gWR0CfnYxwQ176dX2UKGgGaAloD0MIL8GpDyRhdkCUhpRSlGgVTegDaBZHQJ+sNTR6WxB1fZQoaAZoCWgPQwgxRE5fz5Z2QJSGlFKUaBVN6ANoFkdAn6wu6mO2iXV9lChoBmgJaA9DCMGPatjvinZAlIaUUpRoFU3oA2gWR0Cfur5KODJ2dX2UKGgGaAloD0MIKej2koaadkCUhpRSlGgVTegDaBZHQJ+6uAFxGUh1fZQoaAZoCWgPQwhBR6takpJ2QJSGlFKUaBVN6ANoFkdAn8n6bSZ0CHV9lChoBmgJaA9DCIFc4siDo3ZAlIaUUpRoFU3oA2gWR0CfyfQmeDnOdX2UKGgGaAloD0MIKdAn8iSQdkCUhpRSlGgVTegDaBZHQJ/Y73j+7191fZQoaAZoCWgPQwjcLjTX6a52QJSGlFKUaBVN6ANoFkdAn9jpNGmUGHV9lChoBmgJaA9DCPcEie3uf3ZAlIaUUpRoFU3oA2gWR0Cf52iTdLxqdX2UKGgGaAloD0MIhuP5DCirdkCUhpRSlGgVTegDaBZHQJ/nYkleF+N1fZQoaAZoCWgPQwil9bcEIIB2QJSGlFKUaBVN6ANoFkdAn/XHa8Hv+nV9lChoBmgJaA9DCAOy17t/lnZAlIaUUpRoFU3oA2gWR0Cf9cEl3QlbdX2UKGgGaAloD0MIgzXOpiObdkCUhpRSlGgVTegDaBZHQKABjyhBZ6l1fZQoaAZoCWgPQwjspSkCnKN2QJSGlFKUaBVN6ANoFkdAoAGMBfa6BnV9lChoBmgJaA9DCJ3y6EbYr3ZAlIaUUpRoFU3oA2gWR0CgCMxA0KqodX2UKGgGaAloD0MIQ5Hu51SldkCUhpRSlGgVTegDaBZHQKAIyR3/xUh1fZQoaAZoCWgPQwiXWBmN/Ix2QJSGlFKUaBVN6ANoFkdAoA/1KXfIjnV9lChoBmgJaA9DCIasbvXcl3ZAlIaUUpRoFU3oA2gWR0CgD/IFvAGjdWUu"
|
82 |
+
},
|
83 |
+
"ep_success_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
86 |
+
},
|
87 |
+
"_n_updates": 489,
|
88 |
+
"n_steps": 1024,
|
89 |
+
"gamma": 0.9999,
|
90 |
+
"gae_lambda": 0.95,
|
91 |
+
"ent_coef": 0.0,
|
92 |
+
"vf_coef": 0.0,
|
93 |
+
"max_grad_norm": 0.0,
|
94 |
+
"normalize_advantage": true,
|
95 |
+
"batch_size": 128,
|
96 |
+
"cg_max_steps": 25,
|
97 |
+
"cg_damping": 0.1,
|
98 |
+
"line_search_shrinking_factor": 0.8,
|
99 |
+
"line_search_max_iter": 10,
|
100 |
+
"target_kl": 0.01,
|
101 |
+
"n_critic_updates": 20,
|
102 |
+
"sub_sampling_factor": 1
|
103 |
+
}
|
trpo-Swimmer-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3ecbd8b7d0d2c1f01cadf78d146777861e4b86553a36b6131832e75791675457
|
3 |
+
size 43439
|
trpo-Swimmer-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cd59e3af8981a9c5cfce41c22189964f478395e6dd7f405a06710cd19c56ac2
|
3 |
+
size 43134
|
trpo-Swimmer-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
trpo-Swimmer-v3/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab3009b1503082c9a7f0432ae1431ce6e313417faa980c8d3b454266e863dec6
|
3 |
+
size 4379
|