Quentin Gallouédec commited on
Commit
ac61bac
·
1 Parent(s): 898ebab

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Swimmer-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: TRPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Swimmer-v3
16
+ type: Swimmer-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 361.63 +/- 0.84
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **TRPO** Agent playing **Swimmer-v3**
25
+ This is a trained model of a **TRPO** agent playing **Swimmer-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo trpo --env Swimmer-v3 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo trpo --env Swimmer-v3 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo trpo --env Swimmer-v3 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo trpo --env Swimmer-v3 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo trpo --env Swimmer-v3 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo trpo --env Swimmer-v3 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 128),
66
+ ('cg_damping', 0.1),
67
+ ('cg_max_steps', 25),
68
+ ('gae_lambda', 0.95),
69
+ ('gamma', 0.9999),
70
+ ('learning_rate', 0.001),
71
+ ('n_critic_updates', 20),
72
+ ('n_envs', 2),
73
+ ('n_steps', 1024),
74
+ ('n_timesteps', 1000000.0),
75
+ ('normalize', True),
76
+ ('policy', 'MlpPolicy'),
77
+ ('sub_sampling_factor', 1),
78
+ ('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
79
+ ```
args.yml ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - trpo
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Swimmer-v3
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 20
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 5
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 1721833506
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/Swimmer-v3__trpo__1721833506__1676718729
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - wandb_tags
81
+ - []
82
+ - - yaml_file
83
+ - null
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 128
4
+ - - cg_damping
5
+ - 0.1
6
+ - - cg_max_steps
7
+ - 25
8
+ - - gae_lambda
9
+ - 0.95
10
+ - - gamma
11
+ - 0.9999
12
+ - - learning_rate
13
+ - 0.001
14
+ - - n_critic_updates
15
+ - 20
16
+ - - n_envs
17
+ - 2
18
+ - - n_steps
19
+ - 1024
20
+ - - n_timesteps
21
+ - 1000000.0
22
+ - - normalize
23
+ - true
24
+ - - policy
25
+ - MlpPolicy
26
+ - - sub_sampling_factor
27
+ - 1
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:53c0478e6a18f968be04bdb2b3dc2bc4dd1d44daca5ee9135e94143dc44d31c0
3
+ size 1298483
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 361.6335136, "std_reward": 0.8376385862100878, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T16:24:19.323422"}
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33f3cde5dfaacc1507d71b7e143449f5066c21400f2d9acbd5ee1fc6b5ff2513
3
+ size 42553
trpo-Swimmer-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fc3374bff8f0cf51c9e12324b4294d98ea7cf5ddd164457d8369a7c5b9418c7
3
+ size 106327
trpo-Swimmer-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
trpo-Swimmer-v3/data ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7ffa4ded3ee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ffa4ded3f70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ffa4ded5040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ffa4ded50d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7ffa4ded5160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7ffa4ded51f0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ffa4ded5280>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ffa4ded5310>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7ffa4ded53a0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ffa4ded5430>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ffa4ded54c0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ffa4ded5550>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7ffa4ded4780>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWV3wEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWQAAAAAAAAAAAAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/AAAAAAAA8P8AAAAAAADw/wAAAAAAAPD/lGgKSwiFlIwBQ5R0lFKUjARoaWdolGgSKJZAAAAAAAAAAAAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H8AAAAAAADwfwAAAAAAAPB/AAAAAAAA8H+UaApLCIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYIAAAAAAAAAAAAAAAAAAAAlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwiFlGgVdJRSlIwNYm91bmRlZF9hYm92ZZRoEiiWCAAAAAAAAAAAAAAAAAAAAJRoIUsIhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
27
+ "dtype": "float64",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.box.Box'>",
39
+ ":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
40
+ "dtype": "float32",
41
+ "_shape": [
42
+ 2
43
+ ],
44
+ "low": "[-1. -1.]",
45
+ "high": "[1. 1.]",
46
+ "bounded_below": "[ True True]",
47
+ "bounded_above": "[ True True]",
48
+ "_np_random": "RandomState(MT19937)"
49
+ },
50
+ "n_envs": 1,
51
+ "num_timesteps": 1001472,
52
+ "_total_timesteps": 1000000,
53
+ "_num_timesteps_at_start": 0,
54
+ "seed": 0,
55
+ "action_noise": null,
56
+ "start_time": 1676718732928296993,
57
+ "learning_rate": {
58
+ ":type:": "<class 'function'>",
59
+ ":serialized:": "gAWVdwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
60
+ },
61
+ "tensorboard_log": "runs/Swimmer-v3__trpo__1721833506__1676718729/Swimmer-v3",
62
+ "lr_schedule": {
63
+ ":type:": "<class 'function'>",
64
+ ":serialized:": "gAWVdwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgQBlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
65
+ },
66
+ "_last_obs": null,
67
+ "_last_episode_starts": {
68
+ ":type:": "<class 'numpy.ndarray'>",
69
+ ":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
70
+ },
71
+ "_last_original_obs": {
72
+ ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAKRA3w7k0Le/hIQI0VLRoD8MnudAnfeUvzdlMzPPcKm/JMgwTh47rj+tAgo2JA6qv1Tn5PQnDaK/RL2g1tYauL/3MAmRBQWsv1rc54cRH7Y/ROhaW7s2tL/A0G2oo4NaP/QnRKf8/pY/jizzN8r5sj90OIggcC2zP3gIVAXy97E/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksCSwiGlIwBQ5R0lFKULg=="
74
+ },
75
+ "_episode_num": 0,
76
+ "use_sde": false,
77
+ "sde_sample_freq": -1,
78
+ "_current_progress_remaining": -0.0014719999999999178,
79
+ "ep_info_buffer": {
80
+ ":type:": "<class 'collections.deque'>",
81
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMEs7NVfGdkCUhpRSlIwBbJRN6AOMAXSUR0CdBgVR1oxpdX2UKGgGaAloD0MIs3kcBnOVdkCUhpRSlGgVTegDaBZHQJ0F/wqiGnJ1fZQoaAZoCWgPQwiLic3HNb92QJSGlFKUaBVN6ANoFkdAnRSyjQAuI3V9lChoBmgJaA9DCFyv6UGBnXZAlIaUUpRoFU3oA2gWR0CdFKxCY1HfdX2UKGgGaAloD0MIwK+RJIi5dkCUhpRSlGgVTegDaBZHQJ0kLwb2lEZ1fZQoaAZoCWgPQwjYmxiSU6Z2QJSGlFKUaBVN6ANoFkdAnSQovi97GHV9lChoBmgJaA9DCMU7wJNWmnZAlIaUUpRoFU3oA2gWR0CdM7tyPuG9dX2UKGgGaAloD0MIIqrwZziydkCUhpRSlGgVTegDaBZHQJ0ztS4vvjR1fZQoaAZoCWgPQwhW9fI7zYB2QJSGlFKUaBVN6ANoFkdAnUFnTy8SPHV9lChoBmgJaA9DCLd7uU8Oq3ZAlIaUUpRoFU3oA2gWR0CdQWEG7jDLdX2UKGgGaAloD0MIXeLIAxGFdkCUhpRSlGgVTegDaBZHQJ1P9DKHO8l1fZQoaAZoCWgPQwj8q8d967t2QJSGlFKUaBVN6ANoFkdAnU/t7F85S3V9lChoBmgJaA9DCJ5g/3XuhnZAlIaUUpRoFU3oA2gWR0CdXzO6unuRdX2UKGgGaAloD0MIa2EW2vmhdkCUhpRSlGgVTegDaBZHQJ1fLX6InBt1fZQoaAZoCWgPQwheMLjmTr92QJSGlFKUaBVN6ANoFkdAnW3bSRbKR3V9lChoBmgJaA9DCLt+wW5YnHZAlIaUUpRoFU3oA2gWR0CdbdUDMeOodX2UKGgGaAloD0MILzatFEKkdkCUhpRSlGgVTegDaBZHQJ161N+LFXJ1fZQoaAZoCWgPQwjt8NdkjXd2QJSGlFKUaBVN6ANoFkdAnXrOmixmkHV9lChoBmgJaA9DCK/sgsG1o3ZAlIaUUpRoFU3oA2gWR0CdiONA1NxmdX2UKGgGaAloD0MIR+hn6vWDdkCUhpRSlGgVTegDaBZHQJ2I3Pomoit1fZQoaAZoCWgPQwjE0OrkDKl2QJSGlFKUaBVN6ANoFkdAnZfSE6DGtXV9lChoBmgJaA9DCC5yT1c3fXZAlIaUUpRoFU3oA2gWR0Cdl8vIOpbVdX2UKGgGaAloD0MIkZighi+RdkCUhpRSlGgVTegDaBZHQJ2nady1eBx1fZQoaAZoCWgPQwh3n+OjhY92QJSGlFKUaBVN6ANoFkdAnadj1f3N93V9lChoBmgJaA9DCLqe6LrwjnZAlIaUUpRoFU3oA2gWR0Cd0Wmz0HyFdX2UKGgGaAloD0MIjfFh9rJ7dkCUhpRSlGgVTegDaBZHQJ3RY2qDK5l1fZQoaAZoCWgPQwjxZaIIaXZ2QJSGlFKUaBVN6ANoFkdAneEwJgLJCHV9lChoBmgJaA9DCE8iwr/Ir3ZAlIaUUpRoFU3oA2gWR0Cd4SnfVI7OdX2UKGgGaAloD0MI6rKY2PyBdkCUhpRSlGgVTegDaBZHQJ3v1p/PPcB1fZQoaAZoCWgPQwgPCd/72412QJSGlFKUaBVN6ANoFkdAne/QWBSUDHV9lChoBmgJaA9DCLZoAdpWYHZAlIaUUpRoFU3oA2gWR0Cd/ZvBacI7dX2UKGgGaAloD0MI2spL/ududkCUhpRSlGgVTegDaBZHQJ39lX2dupF1fZQoaAZoCWgPQwjTFtf4TGx2QJSGlFKUaBVN6ANoFkdAngrOs90RvnV9lChoBmgJaA9DCMueBDYnwHZAlIaUUpRoFU3oA2gWR0CeCshpxm03dX2UKGgGaAloD0MI1sVtNMB5dkCUhpRSlGgVTegDaBZHQJ4aMPmPo3d1fZQoaAZoCWgPQwjMtWgBGpd2QJSGlFKUaBVN6ANoFkdAnhoqtga3qnV9lChoBmgJaA9DCLN6h9vho3ZAlIaUUpRoFU3oA2gWR0CeKOMxXXAedX2UKGgGaAloD0MIvMlv0UlWdkCUhpRSlGgVTegDaBZHQJ4o3Ov+wTx1fZQoaAZoCWgPQwgOSphpe7J2QJSGlFKUaBVN6ANoFkdAnjI2gOBlMHV9lChoBmgJaA9DCERSCyWTX3ZAlIaUUpRoFU3oA2gWR0CeMjA2hqTKdX2UKGgGaAloD0MIYymSrwScdkCUhpRSlGgVTegDaBZHQJ5AgzUI9kl1fZQoaAZoCWgPQwijlBCsqqB2QJSGlFKUaBVN6ANoFkdAnkB87IT4+XV9lChoBmgJaA9DCI0Mchehk3ZAlIaUUpRoFU3oA2gWR0CeTf+tKZlWdX2UKGgGaAloD0MIPNo4Ym2VdkCUhpRSlGgVTegDaBZHQJ5N+WNWEK51fZQoaAZoCWgPQwisrdhfdq12QJSGlFKUaBVN6ANoFkdAnlzPfO2RaHV9lChoBmgJaA9DCEbOwp42lnZAlIaUUpRoFU3oA2gWR0CeXMk2P1cudX2UKGgGaAloD0MIknajj7midkCUhpRSlGgVTegDaBZHQJ5sJRXOnl51fZQoaAZoCWgPQwh7Lei98V92QJSGlFKUaBVN6ANoFkdAnmwe0b961XV9lChoBmgJaA9DCGNCzCUVjHZAlIaUUpRoFU3oA2gWR0Ceezrmhdt3dX2UKGgGaAloD0MIEeSghNmrdkCUhpRSlGgVTegDaBZHQJ57NKDkELZ1fZQoaAZoCWgPQwgMBWwHY5p2QJSGlFKUaBVN6ANoFkdAnqTnuE25x3V9lChoBmgJaA9DCGSV0jO9f3ZAlIaUUpRoFU3oA2gWR0CepOFvAGjcdX2UKGgGaAloD0MI5IOezeqadkCUhpRSlGgVTegDaBZHQJ60bNcGC7N1fZQoaAZoCWgPQwhU4GQbeNB2QJSGlFKUaBVN6ANoFkdAnrRmixmkFnV9lChoBmgJaA9DCM1y2ehcqXZAlIaUUpRoFU3oA2gWR0Cew8ovi97GdX2UKGgGaAloD0MI58WJr/aadkCUhpRSlGgVTegDaBZHQJ7Dw+Y+jdp1fZQoaAZoCWgPQwgVqMXgYbB2QJSGlFKUaBVN6ANoFkdAntI8aCL/CXV9lChoBmgJaA9DCNAKDFldl3ZAlIaUUpRoFU3oA2gWR0Ce0jYcebNKdX2UKGgGaAloD0MITraBO5CMdkCUhpRSlGgVTegDaBZHQJ7g0qZtvXN1fZQoaAZoCWgPQwhGC9C2Gpx2QJSGlFKUaBVN6ANoFkdAnuDMXaakRHV9lChoBmgJaA9DCGDoEaOnf3ZAlIaUUpRoFU3oA2gWR0Ce7olCkXUIdX2UKGgGaAloD0MIjup0IOtodkCUhpRSlGgVTegDaBZHQJ7ugvg3tKJ1fZQoaAZoCWgPQwi6ZvLNtqV2QJSGlFKUaBVN6ANoFkdAnv1Irz5GjXV9lChoBmgJaA9DCAYq49/nsHZAlIaUUpRoFU3oA2gWR0Ce/UJp35erdX2UKGgGaAloD0MIVpv/Vx1/dkCUhpRSlGgVTegDaBZHQJ8MqpyZKFt1fZQoaAZoCWgPQwijrUoi+5x2QJSGlFKUaBVN6ANoFkdAnwykUTL4e3V9lChoBmgJaA9DCOPHmLvWq3ZAlIaUUpRoFU3oA2gWR0CfG6C9AX2vdX2UKGgGaAloD0MI58dfWlSUdkCUhpRSlGgVTegDaBZHQJ8bmnJkoWp1fZQoaAZoCWgPQwifWn11VbF2QJSGlFKUaBVN6ANoFkdAnygXlCCz1XV9lChoBmgJaA9DCDc10HxOvXZAlIaUUpRoFU3oA2gWR0CfKBFN+LFXdX2UKGgGaAloD0MImfG20uuddkCUhpRSlGgVTegDaBZHQJ83X0/W1+l1fZQoaAZoCWgPQwgDCvX0kbR2QJSGlFKUaBVN6ANoFkdAnzdZBHCoCXV9lChoBmgJaA9DCF36l6QypHZAlIaUUpRoFU3oA2gWR0CfRjUtqYZ3dX2UKGgGaAloD0MII2dhTzu4dkCUhpRSlGgVTegDaBZHQJ9GLuZ1FH91fZQoaAZoCWgPQwgUBmUazbp2QJSGlFKUaBVN6ANoFkdAn2/0HUtqYnV9lChoBmgJaA9DCI83+S06rXZAlIaUUpRoFU3oA2gWR0Cfb+3T/hl2dX2UKGgGaAloD0MIiQj/IqiQdkCUhpRSlGgVTegDaBZHQJ9+9RFZxJd1fZQoaAZoCWgPQwh1dcdiG8R2QJSGlFKUaBVN6ANoFkdAn37ux8lXzXV9lChoBmgJaA9DCM7drpcmp3ZAlIaUUpRoFU3oA2gWR0CfjutCRfWudX2UKGgGaAloD0MIQiRDjm2YdkCUhpRSlGgVTegDaBZHQJ+O5PtUn5V1fZQoaAZoCWgPQwjyRBDnIYV2QJSGlFKUaBVN6ANoFkdAn52SuMdcS3V9lChoBmgJaA9DCNJwytw8enZAlIaUUpRoFU3oA2gWR0CfnYxwQ176dX2UKGgGaAloD0MIL8GpDyRhdkCUhpRSlGgVTegDaBZHQJ+sNTR6WxB1fZQoaAZoCWgPQwgxRE5fz5Z2QJSGlFKUaBVN6ANoFkdAn6wu6mO2iXV9lChoBmgJaA9DCMGPatjvinZAlIaUUpRoFU3oA2gWR0Cfur5KODJ2dX2UKGgGaAloD0MIKej2koaadkCUhpRSlGgVTegDaBZHQJ+6uAFxGUh1fZQoaAZoCWgPQwhBR6takpJ2QJSGlFKUaBVN6ANoFkdAn8n6bSZ0CHV9lChoBmgJaA9DCIFc4siDo3ZAlIaUUpRoFU3oA2gWR0CfyfQmeDnOdX2UKGgGaAloD0MIKdAn8iSQdkCUhpRSlGgVTegDaBZHQJ/Y73j+7191fZQoaAZoCWgPQwjcLjTX6a52QJSGlFKUaBVN6ANoFkdAn9jpNGmUGHV9lChoBmgJaA9DCPcEie3uf3ZAlIaUUpRoFU3oA2gWR0Cf52iTdLxqdX2UKGgGaAloD0MIhuP5DCirdkCUhpRSlGgVTegDaBZHQJ/nYkleF+N1fZQoaAZoCWgPQwil9bcEIIB2QJSGlFKUaBVN6ANoFkdAn/XHa8Hv+nV9lChoBmgJaA9DCAOy17t/lnZAlIaUUpRoFU3oA2gWR0Cf9cEl3QlbdX2UKGgGaAloD0MIgzXOpiObdkCUhpRSlGgVTegDaBZHQKABjyhBZ6l1fZQoaAZoCWgPQwjspSkCnKN2QJSGlFKUaBVN6ANoFkdAoAGMBfa6BnV9lChoBmgJaA9DCJ3y6EbYr3ZAlIaUUpRoFU3oA2gWR0CgCMxA0KqodX2UKGgGaAloD0MIQ5Hu51SldkCUhpRSlGgVTegDaBZHQKAIyR3/xUh1fZQoaAZoCWgPQwiXWBmN/Ix2QJSGlFKUaBVN6ANoFkdAoA/1KXfIjnV9lChoBmgJaA9DCIasbvXcl3ZAlIaUUpRoFU3oA2gWR0CgD/IFvAGjdWUu"
82
+ },
83
+ "ep_success_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
86
+ },
87
+ "_n_updates": 489,
88
+ "n_steps": 1024,
89
+ "gamma": 0.9999,
90
+ "gae_lambda": 0.95,
91
+ "ent_coef": 0.0,
92
+ "vf_coef": 0.0,
93
+ "max_grad_norm": 0.0,
94
+ "normalize_advantage": true,
95
+ "batch_size": 128,
96
+ "cg_max_steps": 25,
97
+ "cg_damping": 0.1,
98
+ "line_search_shrinking_factor": 0.8,
99
+ "line_search_max_iter": 10,
100
+ "target_kl": 0.01,
101
+ "n_critic_updates": 20,
102
+ "sub_sampling_factor": 1
103
+ }
trpo-Swimmer-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3ecbd8b7d0d2c1f01cadf78d146777861e4b86553a36b6131832e75791675457
3
+ size 43439
trpo-Swimmer-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cd59e3af8981a9c5cfce41c22189964f478395e6dd7f405a06710cd19c56ac2
3
+ size 43134
trpo-Swimmer-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
trpo-Swimmer-v3/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab3009b1503082c9a7f0432ae1431ce6e313417faa980c8d3b454266e863dec6
3
+ size 4379