File size: 17,169 Bytes
74ba4aa
 
 
158a262
 
 
74ba4aa
 
 
52ab8b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74ba4aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158a262
74ba4aa
 
 
 
 
 
 
 
 
 
 
 
 
158a262
74ba4aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158a262
74ba4aa
 
 
 
 
 
 
 
 
 
 
158a262
74ba4aa
 
 
 
 
 
 
 
 
 
 
158a262
74ba4aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158a262
74ba4aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158a262
74ba4aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158a262
74ba4aa
 
 
 
 
 
 
 
158a262
 
74ba4aa
3f02298
 
 
992c5e4
3f02298
 
 
 
 
 
 
 
 
 
 
 
 
 
f3cf39e
3f02298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
992c5e4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
---
tags:
- mteb
- qihoo360
- 奇虎360
- RAG-retrieval
model-index:
- name: 360Zhinao_search
  results:
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/CMedQAv1-reranking
      name: MTEB CMedQAv1
      config: default
      split: test
      revision: None
    metrics:
    - type: map
      value: 87.004722953844
    - type: mrr
      value: 89.34686507936507
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/CMedQAv2-reranking
      name: MTEB CMedQAv2
      config: default
      split: test
      revision: None
    metrics:
    - type: map
      value: 88.48306990136507
    - type: mrr
      value: 90.57761904761904
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/Mmarco-reranking
      name: MTEB MMarcoReranking
      config: default
      split: dev
      revision: None
    metrics:
    - type: map
      value: 32.40909999537645
    - type: mrr
      value: 31.48690476190476
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/T2Reranking
      name: MTEB T2Reranking
      config: default
      split: dev
      revision: None
    metrics:
    - type: map
      value: 67.80300509862872
    - type: mrr
      value: 78.14543234355354
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/CmedqaRetrieval
      name: MTEB CmedqaRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 27.171
    - type: map_at_10
      value: 40.109
    - type: map_at_100
      value: 41.937999999999995
    - type: map_at_1000
      value: 42.051
    - type: map_at_3
      value: 35.882999999999996
    - type: map_at_5
      value: 38.22
    - type: mrr_at_1
      value: 41.285
    - type: mrr_at_10
      value: 49.247
    - type: mrr_at_100
      value: 50.199000000000005
    - type: mrr_at_1000
      value: 50.245
    - type: mrr_at_3
      value: 46.837
    - type: mrr_at_5
      value: 48.223
    - type: ndcg_at_1
      value: 41.285
    - type: ndcg_at_10
      value: 46.727000000000004
    - type: ndcg_at_100
      value: 53.791
    - type: ndcg_at_1000
      value: 55.706
    - type: ndcg_at_3
      value: 41.613
    - type: ndcg_at_5
      value: 43.702999999999996
    - type: precision_at_1
      value: 41.285
    - type: precision_at_10
      value: 10.34
    - type: precision_at_100
      value: 1.6019999999999999
    - type: precision_at_1000
      value: 0.184
    - type: precision_at_3
      value: 23.423
    - type: precision_at_5
      value: 16.914
    - type: recall_at_1
      value: 27.171
    - type: recall_at_10
      value: 57.04900000000001
    - type: recall_at_100
      value: 86.271
    - type: recall_at_1000
      value: 99.02300000000001
    - type: recall_at_3
      value: 41.528
    - type: recall_at_5
      value: 48.162
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/CovidRetrieval
      name: MTEB CovidRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 73.762
    - type: map_at_10
      value: 81.663
    - type: map_at_100
      value: 81.87100000000001
    - type: map_at_1000
      value: 81.877
    - type: map_at_3
      value: 80.10199999999999
    - type: map_at_5
      value: 81.162
    - type: mrr_at_1
      value: 74.078
    - type: mrr_at_10
      value: 81.745
    - type: mrr_at_100
      value: 81.953
    - type: mrr_at_1000
      value: 81.959
    - type: mrr_at_3
      value: 80.25999999999999
    - type: mrr_at_5
      value: 81.266
    - type: ndcg_at_1
      value: 73.973
    - type: ndcg_at_10
      value: 85.021
    - type: ndcg_at_100
      value: 85.884
    - type: ndcg_at_1000
      value: 86.02300000000001
    - type: ndcg_at_3
      value: 82.03399999999999
    - type: ndcg_at_5
      value: 83.905
    - type: precision_at_1
      value: 73.973
    - type: precision_at_10
      value: 9.631
    - type: precision_at_100
      value: 1
    - type: precision_at_1000
      value: 0.101
    - type: precision_at_3
      value: 29.329
    - type: precision_at_5
      value: 18.546000000000003
    - type: recall_at_1
      value: 73.762
    - type: recall_at_10
      value: 95.258
    - type: recall_at_100
      value: 98.946
    - type: recall_at_1000
      value: 100
    - type: recall_at_3
      value: 87.46000000000001
    - type: recall_at_5
      value: 91.93900000000001
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/DuRetrieval
      name: MTEB DuRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 25.967000000000002
    - type: map_at_10
      value: 79.928
    - type: map_at_100
      value: 82.76400000000001
    - type: map_at_1000
      value: 82.794
    - type: map_at_3
      value: 54.432
    - type: map_at_5
      value: 69.246
    - type: mrr_at_1
      value: 89
    - type: mrr_at_10
      value: 92.81
    - type: mrr_at_100
      value: 92.857
    - type: mrr_at_1000
      value: 92.86
    - type: mrr_at_3
      value: 92.467
    - type: mrr_at_5
      value: 92.67699999999999
    - type: ndcg_at_1
      value: 89
    - type: ndcg_at_10
      value: 87.57000000000001
    - type: ndcg_at_100
      value: 90.135
    - type: ndcg_at_1000
      value: 90.427
    - type: ndcg_at_3
      value: 84.88900000000001
    - type: ndcg_at_5
      value: 84.607
    - type: precision_at_1
      value: 89
    - type: precision_at_10
      value: 42.245
    - type: precision_at_100
      value: 4.8340000000000005
    - type: precision_at_1000
      value: 0.49
    - type: precision_at_3
      value: 75.883
    - type: precision_at_5
      value: 64.88000000000001
    - type: recall_at_1
      value: 25.967000000000002
    - type: recall_at_10
      value: 89.79599999999999
    - type: recall_at_100
      value: 98.042
    - type: recall_at_1000
      value: 99.61
    - type: recall_at_3
      value: 57.084
    - type: recall_at_5
      value: 74.763
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/EcomRetrieval
      name: MTEB EcomRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 53.6
    - type: map_at_10
      value: 63.94800000000001
    - type: map_at_100
      value: 64.37899999999999
    - type: map_at_1000
      value: 64.39200000000001
    - type: map_at_3
      value: 61.683
    - type: map_at_5
      value: 63.078
    - type: mrr_at_1
      value: 53.6
    - type: mrr_at_10
      value: 63.94800000000001
    - type: mrr_at_100
      value: 64.37899999999999
    - type: mrr_at_1000
      value: 64.39200000000001
    - type: mrr_at_3
      value: 61.683
    - type: mrr_at_5
      value: 63.078
    - type: ndcg_at_1
      value: 53.6
    - type: ndcg_at_10
      value: 68.904
    - type: ndcg_at_100
      value: 71.019
    - type: ndcg_at_1000
      value: 71.345
    - type: ndcg_at_3
      value: 64.30799999999999
    - type: ndcg_at_5
      value: 66.8
    - type: precision_at_1
      value: 53.6
    - type: precision_at_10
      value: 8.44
    - type: precision_at_100
      value: 0.943
    - type: precision_at_1000
      value: 0.097
    - type: precision_at_3
      value: 23.967
    - type: precision_at_5
      value: 15.58
    - type: recall_at_1
      value: 53.6
    - type: recall_at_10
      value: 84.39999999999999
    - type: recall_at_100
      value: 94.3
    - type: recall_at_1000
      value: 96.8
    - type: recall_at_3
      value: 71.89999999999999
    - type: recall_at_5
      value: 77.9
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/MMarcoRetrieval
      name: MTEB MMarcoRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 71.375
    - type: map_at_10
      value: 80.05600000000001
    - type: map_at_100
      value: 80.28699999999999
    - type: map_at_1000
      value: 80.294
    - type: map_at_3
      value: 78.479
    - type: map_at_5
      value: 79.51899999999999
    - type: mrr_at_1
      value: 73.739
    - type: mrr_at_10
      value: 80.535
    - type: mrr_at_100
      value: 80.735
    - type: mrr_at_1000
      value: 80.742
    - type: mrr_at_3
      value: 79.212
    - type: mrr_at_5
      value: 80.059
    - type: ndcg_at_1
      value: 73.739
    - type: ndcg_at_10
      value: 83.321
    - type: ndcg_at_100
      value: 84.35000000000001
    - type: ndcg_at_1000
      value: 84.542
    - type: ndcg_at_3
      value: 80.401
    - type: ndcg_at_5
      value: 82.107
    - type: precision_at_1
      value: 73.739
    - type: precision_at_10
      value: 9.878
    - type: precision_at_100
      value: 1.039
    - type: precision_at_1000
      value: 0.106
    - type: precision_at_3
      value: 30.053
    - type: precision_at_5
      value: 18.953999999999997
    - type: recall_at_1
      value: 71.375
    - type: recall_at_10
      value: 92.84599999999999
    - type: recall_at_100
      value: 97.49799999999999
    - type: recall_at_1000
      value: 98.992
    - type: recall_at_3
      value: 85.199
    - type: recall_at_5
      value: 89.22
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/MedicalRetrieval
      name: MTEB MedicalRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 55.60000000000001
    - type: map_at_10
      value: 61.035
    - type: map_at_100
      value: 61.541999999999994
    - type: map_at_1000
      value: 61.598
    - type: map_at_3
      value: 59.683
    - type: map_at_5
      value: 60.478
    - type: mrr_at_1
      value: 55.60000000000001
    - type: mrr_at_10
      value: 61.035
    - type: mrr_at_100
      value: 61.541999999999994
    - type: mrr_at_1000
      value: 61.598
    - type: mrr_at_3
      value: 59.683
    - type: mrr_at_5
      value: 60.478
    - type: ndcg_at_1
      value: 55.60000000000001
    - type: ndcg_at_10
      value: 63.686
    - type: ndcg_at_100
      value: 66.417
    - type: ndcg_at_1000
      value: 67.92399999999999
    - type: ndcg_at_3
      value: 60.951
    - type: ndcg_at_5
      value: 62.388
    - type: precision_at_1
      value: 55.60000000000001
    - type: precision_at_10
      value: 7.199999999999999
    - type: precision_at_100
      value: 0.8540000000000001
    - type: precision_at_1000
      value: 0.097
    - type: precision_at_3
      value: 21.532999999999998
    - type: precision_at_5
      value: 13.62
    - type: recall_at_1
      value: 55.60000000000001
    - type: recall_at_10
      value: 72
    - type: recall_at_100
      value: 85.39999999999999
    - type: recall_at_1000
      value: 97.3
    - type: recall_at_3
      value: 64.60000000000001
    - type: recall_at_5
      value: 68.10000000000001
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/T2Retrieval
      name: MTEB T2Retrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 28.314
    - type: map_at_10
      value: 80.268
    - type: map_at_100
      value: 83.75399999999999
    - type: map_at_1000
      value: 83.80499999999999
    - type: map_at_3
      value: 56.313
    - type: map_at_5
      value: 69.336
    - type: mrr_at_1
      value: 91.96
    - type: mrr_at_10
      value: 93.926
    - type: mrr_at_100
      value: 94
    - type: mrr_at_1000
      value: 94.003
    - type: mrr_at_3
      value: 93.587
    - type: mrr_at_5
      value: 93.804
    - type: ndcg_at_1
      value: 91.96
    - type: ndcg_at_10
      value: 87.12299999999999
    - type: ndcg_at_100
      value: 90.238
    - type: ndcg_at_1000
      value: 90.723
    - type: ndcg_at_3
      value: 88.347
    - type: ndcg_at_5
      value: 87.095
    - type: precision_at_1
      value: 91.96
    - type: precision_at_10
      value: 43.257
    - type: precision_at_100
      value: 5.064
    - type: precision_at_1000
      value: 0.517
    - type: precision_at_3
      value: 77.269
    - type: precision_at_5
      value: 64.89
    - type: recall_at_1
      value: 28.314
    - type: recall_at_10
      value: 85.917
    - type: recall_at_100
      value: 96.297
    - type: recall_at_1000
      value: 98.802
    - type: recall_at_3
      value: 57.75900000000001
    - type: recall_at_5
      value: 72.287
  - task:
      type: Retrieval
    dataset:
      type: C-MTEB/VideoRetrieval
      name: MTEB VideoRetrieval
      config: default
      split: dev
      revision: None
    metrics:
    - type: map_at_1
      value: 65.60000000000001
    - type: map_at_10
      value: 74.502
    - type: map_at_100
      value: 74.864
    - type: map_at_1000
      value: 74.875
    - type: map_at_3
      value: 73.3
    - type: map_at_5
      value: 74.07000000000001
    - type: mrr_at_1
      value: 65.60000000000001
    - type: mrr_at_10
      value: 74.502
    - type: mrr_at_100
      value: 74.864
    - type: mrr_at_1000
      value: 74.875
    - type: mrr_at_3
      value: 73.3
    - type: mrr_at_5
      value: 74.07000000000001
    - type: ndcg_at_1
      value: 65.60000000000001
    - type: ndcg_at_10
      value: 78.091
    - type: ndcg_at_100
      value: 79.838
    - type: ndcg_at_1000
      value: 80.10199999999999
    - type: ndcg_at_3
      value: 75.697
    - type: ndcg_at_5
      value: 77.07000000000001
    - type: precision_at_1
      value: 65.60000000000001
    - type: precision_at_10
      value: 8.9
    - type: precision_at_100
      value: 0.971
    - type: precision_at_1000
      value: 0.099
    - type: precision_at_3
      value: 27.533
    - type: precision_at_5
      value: 17.18
    - type: recall_at_1
      value: 65.60000000000001
    - type: recall_at_10
      value: 89
    - type: recall_at_100
      value: 97.1
    - type: recall_at_1000
      value: 99.1
    - type: recall_at_3
      value: 82.6
    - type: recall_at_5
      value: 85.9
license: apache-2.0
library_name: transformers
---

# Model Introduction
360Zhinao-search uses the self-developed BERT model as the base for multi-task fine-tuning, which has an average score of 75.05 on the Retrieval task on the C-MTEB-Retrieval benchmark, currently ranking first.

[C-MTEB-Retrieval leaderboard](https://huggingface.co/spaces/mteb/leaderboard) contains a total of 8 [query, passage] similarity retrieval subtasks in different fields, using NDCG@10 (Normalized Discounted Cumulative Gain @ 10) as the evaluation index.

| Model | T2Retrieval | MMarcoRetrieval | DuRetrieval | CovidRetrieval | CmedqaRetrieval | EcomRetrieval | MedicalRetrieval | VideoRetrieval | Avg |  
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|  
|**360Zhinao-search** | 87.12 | 83.32 | 87.57 | 85.02 | 46.73 | 68.9 | 63.69 | 78.09 | **75.05** |
|AGE_Hybrid | 86.88 | 80.65 | 89.28 | 83.66 | 47.26 | 69.28 | 65.94 | 76.79 | 74.97 |
|OpenSearch-text-hybrid | 86.76 | 79.93 | 87.85 | 84.03 | 46.56 | 68.79 | 65.92 | 75.43 | 74.41 |
|piccolo-large-zh-v2 | 86.14 | 79.54 | 89.14 | 86.78 | 47.58 | 67.75 | 64.88 | 73.1 | 74.36 |
|stella-large-zh-v3-1792d | 85.56 | 79.14 | 87.13 | 82.44 | 46.87 | 68.62 | 65.18 | 73.89 | 73.6 |

## Optimization points
1. Data filtering: Strictly prevent the C-MTEB-Retrieval test data from leaking, and clean all queries and passages in the test set;
2. Data source enhancement: Use open source data and LLM synthetic data to improve data diversity;
3. Negative example mining: Use multiple methods to deeply mine difficult-to-distinguish negative examples to improve information gain;
4. Training efficiency: multi-machine multi-GPU training + Deepspeed method to optimize GPU memory utilization.

## Usage
```bash
from typing import cast, List, Dict, Union
from transformers import AutoModel, AutoTokenizer
import torch
import numpy as np

tokenizer = AutoTokenizer.from_pretrained('qihoo360/360Zhinao-search')
model = AutoModel.from_pretrained('qihoo360/360Zhinao-search')
sentences = ['天空是什么颜色的', '天空是蓝色的']
inputs = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt', max_length=512)

if __name__ == "__main__":

    with torch.no_grad():
        last_hidden_state = model(**inputs, return_dict=True).last_hidden_state
        embeddings = last_hidden_state[:, 0]
        embeddings = torch.nn.functional.normalize(embeddings, dim=-1)
        embeddings = embeddings.cpu().numpy()

    print("embeddings:")
    print(embeddings)

    cos_sim = np.dot(embeddings[0], embeddings[1])
    print("cos_sim:", cos_sim)

```

## Reference
[bge fine-tuning code](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune)

[C-MTEB official test script](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)


## License
The source code of this repository follows the open-source license Apache 2.0.

360​Zhinao open-source models support commercial use. If you wish to use these models or continue training them for commercial purposes, please contact us via email ([email protected]) to apply. For the specific license agreement, please see <<360 Zhinao Open-Source Model License>>.