File size: 5,931 Bytes
b2e192f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95e76c4
b2e192f
95e76c4
b2e192f
 
 
 
 
 
4f407e9
b2e192f
 
 
 
 
 
 
84b55d0
b2e192f
 
 
 
 
 
84b55d0
b2e192f
 
 
 
 
 
84b55d0
b2e192f
 
 
 
 
 
 
 
 
ed8ecf2
b2e192f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---
license: apache-2.0
datasets:
- liuhaotian/LLaVA-CC3M-Pretrain-595K
- liuhaotian/LLaVA-Instruct-150K
- FreedomIntelligence/ALLaVA-4V-Chinese
- shareAI/ShareGPT-Chinese-English-90k
language:
- zh
- en
pipeline_tag: visual-question-answering
---

# Model Card for IAA: Inner-Adaptor Architecture

**Github**:https://github.com/360CVGroup/Inner-Adaptor-Architecture

**[IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities](https://www.arxiv.org/abs/2408.12902)** 


Bin Wang*, Chunyu Xie*, Dawei Leng†, Yuhui Yin(*Equal Contribution, ✝Corresponding Author)

[![arXiv](https://img.shields.io/badge/arXiv-2408.12902-b31b1b.svg)](https://www.arxiv.org/abs/2408.12902)

We propose a MLLM based on Inner-Adaptor Architecture (IAA). IAA demonstrates that training with a frozen language model can surpass the models with fine-tuned LLMs in both multimodal comprehension and visual grounding tasks. Moreover, after deployment, our approach incorporates multiple workflows, thereby preserving the NLP proficiency of the language model. With a single download, the model can be finetuned to cater to various task specifications. Enjoy the seamless experience of utilizing our IAA model.


<p align="center">
  <img src="overview.png" width=80%/>
</p>


## Model Performance
### Main Results on General Multimodal Benchmarks. 

 <p align="center">
  <img src="mmresult.png" width=90%/>
</p>

### Results on Visual Grounding Benchmarks.
<!-- grounding_re -->

 <p align="center">
  <img src="grounding_re.png" width=90%/>
</p>

### Comparison on text-only question answering.
<!-- grounding_re -->

 <p align="center">
  <img src="NLPresult.png" width=90%/>
</p>

## Quick Start 🤗
### First pull off our model
```Shell
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from PIL import Image

checkpoint = "qihoo360/Inner-Adaptor-Architecture"

model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype=torch.float16, device_map='cuda', trust_remote_code=True).eval()
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
vision_tower = model.get_vision_tower()
vision_tower.load_model()
vision_tower.to(device="cuda", dtype=torch.float16)
image_processor = vision_tower.image_processor
tokenizer.pad_token = tokenizer.eos_token

terminators = [
    tokenizer.convert_tokens_to_ids("<|eot_id|>",)
]
```



### Multimodal Workflow: task_type="MM"
```Shell
image = Image.open("readpanda.jpg").convert('RGB')
query = "What animal is in the picture?"

inputs = model.build_conversation_input_ids(tokenizer, query=query, image=image, image_processor=image_processor)

input_ids = inputs["input_ids"].to(device='cuda', non_blocking=True)
images = inputs["image"].to(dtype=torch.float16, device='cuda', non_blocking=True)

output_ids = model.generate(
    input_ids,
    task_type="MM",
    images=images,
    do_sample=False,
    eos_token_id=terminators,
    num_beams=1,
    max_new_tokens=512,
    use_cache=True)

input_token_len = input_ids.shape[1]
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
print(outputs)
```

### Grounding Workflow: task_type="G"
```Shell
image = Image.open("COCO_train2014_000000014502.jpg").convert('RGB')
query = "Please provide the bounding box coordinate of the region this sentence describes: dude with black shirt says circa."

inputs = model.build_conversation_input_ids(tokenizer, query=query, image=image, image_processor=image_processor)

input_ids = inputs["input_ids"].to(device='cuda', non_blocking=True)
images = inputs["image"].to(dtype=torch.float16, device='cuda', non_blocking=True)

output_ids = model.generate(
    input_ids,
    task_type="G",
    images=images,
    do_sample=False,
    eos_token_id=terminators,
    num_beams=1,
    max_new_tokens=512,
    use_cache=True)
input_token_len = input_ids.shape[1]
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
print(outputs)
```

### Text-only Workflow: task_type="Text"

```Shell
query = "What is the approximate weight of an adult red panda?"
inputs = model.build_conversation_input_ids(tokenizer, query=query)

input_ids = inputs["input_ids"].to(device='cuda', non_blocking=True)
images = None


output_ids = model.generate(
    input_ids,
    task_type="Text",
    images=images,
    do_sample=False,
    eos_token_id=terminators,
    num_beams=1,
    max_new_tokens=512,
    use_cache=True)

input_token_len = input_ids.shape[1]
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
outputs = outputs.strip()
print(outputs)
```

## We Are Hiring
We are seeking academic interns in the Multimodal field. If interested, please send your resume to [email protected].

## Citation
If you find IAA useful for your research and applications, please cite using this BibTeX:

```
@article{Wang2024IAA,
  title={IAA: Inner-Adaptor Architecture Empowers Frozen Large Language Model with Multimodal Capabilities},
  author={Bin Wang and Chunyu Xie and Dawei Leng and Yuhui Yin},
  journal={arXiv preprint arXiv:2408.12902},
  year={2024},
}
```

## License
This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses.
The content of this project itself is licensed under the [Apache license 2.0]

**Where to send questions or comments about the model:**
https://github.com/360CVGroup/Inner-Adaptor-Architecture



## Related Projects
This work wouldn't be possible without the incredible open-source code of these projects. Huge thanks!
- [Meta Llama 3](https://github.com/meta-llama/llama3)
- [LLaVA: Large Language and Vision Assistant](https://github.com/haotian-liu/LLaVA)
- [360VL](https://github.com/360CVGroup/360VL)