File size: 2,773 Bytes
3434a94
 
 
 
 
 
 
 
 
b4c298e
3434a94
 
 
 
 
b4c298e
3434a94
 
 
 
 
b4c298e
3434a94
b4c298e
3434a94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- qmeeus/slue-voxpopuli
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: WhisperForNamedEntityRecognition
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: qmeeus/slue-voxpopuli
      type: qmeeus/slue-voxpopuli
      split: dev
    metrics:
    - type: wer
      value: 10.482824557809192
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# WhisperForNamedEntityRecognition

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the qmeeus/slue-voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 8.1514
- Wer: 10.4828

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1600
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 31.3741       | 0.06  | 100  | 25.8582         | 10.4828 |
| 13.0078       | 1.03  | 200  | 13.4173         | 10.4828 |
| 10.3619       | 1.09  | 300  | 10.8540         | 10.4828 |
| 8.7869        | 2.06  | 400  | 9.6249          | 10.4828 |
| 7.3964        | 3.02  | 500  | 9.1812          | 10.4828 |
| 6.6321        | 3.08  | 600  | 8.6536          | 10.4828 |
| 6.4612        | 4.05  | 700  | 8.6046          | 10.4828 |
| 4.8358        | 5.02  | 800  | 8.0890          | 10.4828 |
| 4.4918        | 5.08  | 900  | 8.3141          | 10.4828 |
| 4.7548        | 6.04  | 1000 | 8.1660          | 10.4828 |
| 3.7881        | 7.01  | 1100 | 8.2471          | 10.4828 |
| 3.1916        | 7.07  | 1200 | 8.0779          | 10.4828 |
| 3.2039        | 8.04  | 1300 | 8.1106          | 10.4828 |
| 3.038         | 9.0   | 1400 | 8.0875          | 10.4828 |
| 2.3249        | 9.07  | 1500 | 8.1025          | 10.4828 |
| 2.6124        | 10.03 | 1600 | 8.1514          | 10.4828 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.10.0
- Datasets 2.7.1.dev0
- Tokenizers 0.11.0