File size: 2,773 Bytes
3434a94 b4c298e 3434a94 b4c298e 3434a94 b4c298e 3434a94 b4c298e 3434a94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- qmeeus/slue-voxpopuli
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: WhisperForNamedEntityRecognition
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: qmeeus/slue-voxpopuli
type: qmeeus/slue-voxpopuli
split: dev
metrics:
- type: wer
value: 10.482824557809192
name: Wer
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# WhisperForNamedEntityRecognition
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the qmeeus/slue-voxpopuli dataset.
It achieves the following results on the evaluation set:
- Loss: 8.1514
- Wer: 10.4828
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- training_steps: 1600
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 31.3741 | 0.06 | 100 | 25.8582 | 10.4828 |
| 13.0078 | 1.03 | 200 | 13.4173 | 10.4828 |
| 10.3619 | 1.09 | 300 | 10.8540 | 10.4828 |
| 8.7869 | 2.06 | 400 | 9.6249 | 10.4828 |
| 7.3964 | 3.02 | 500 | 9.1812 | 10.4828 |
| 6.6321 | 3.08 | 600 | 8.6536 | 10.4828 |
| 6.4612 | 4.05 | 700 | 8.6046 | 10.4828 |
| 4.8358 | 5.02 | 800 | 8.0890 | 10.4828 |
| 4.4918 | 5.08 | 900 | 8.3141 | 10.4828 |
| 4.7548 | 6.04 | 1000 | 8.1660 | 10.4828 |
| 3.7881 | 7.01 | 1100 | 8.2471 | 10.4828 |
| 3.1916 | 7.07 | 1200 | 8.0779 | 10.4828 |
| 3.2039 | 8.04 | 1300 | 8.1106 | 10.4828 |
| 3.038 | 9.0 | 1400 | 8.0875 | 10.4828 |
| 2.3249 | 9.07 | 1500 | 8.1025 | 10.4828 |
| 2.6124 | 10.03 | 1600 | 8.1514 | 10.4828 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.10.0
- Datasets 2.7.1.dev0
- Tokenizers 0.11.0
|