File size: 1,783 Bytes
a5df904 138ad6d a5df904 138ad6d a5df904 138ad6d a5df904 8668e51 a5df904 f83f8ef a5df904 138ad6d a5df904 ea09db5 138ad6d ea09db5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
from typing import Any, Dict
from transformers import BlipProcessor, BlipForConditionalGeneration
from PIL import Image
from io import BytesIO
import torch
import base64
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class EndpointHandler():
def __init__(self, path=""):
self.model = BlipForConditionalGeneration.from_pretrained(
"quadranttechnologies/qhub-blip-image-captioning-finetuned").to(device)
self.processor = BlipProcessor.from_pretrained("quadranttechnologies/qhub-blip-image-captioning-finetuned")
self.model.eval()
self.model = self.model.to(device).to(device)
def __call__(self, data: Any) -> Dict[str, Any]:
"""
Args:
data (:obj:):
includes the input data and the parameters for the inference.
Return:
A :obj:`dict`:. The object returned should be a dict of one list like {"descriptions": ["Description of the image"]} containing :
- "description": A string corresponding to the generated description.
"""
inputs = data.pop("inputs", data)
text = data.get("text", "")
parameters = data.pop("parameters", {})
raw_images = Image.open(inputs).convert("RGB")
processed_image = self.processor(images=raw_images, text=text, return_tensors="pt")
processed_image["pixel_values"] = processed_image["pixel_values"].to(device)
processed_image = {**processed_image, **parameters}
with torch.no_grad():
out = self.model.generate(
**processed_image
)
description = self.processor.batch_decode(out, skip_special_tokens=True)
return {"description": description}
handler = EndpointHandler()
|