--- language: - en base_model: - Salesforce/blip-image-captioning-base pipeline_tag: image-to-text tags: - art license: apache-2.0 metrics: - bleu library_name: transformers datasets: - phiyodr/coco2017 --- ### Fine-Tuned Image Captioning Model This is a fine-tuned version of BLIP for visual answering on images. This model is finetuned on Stanford Online Products Dataset comprising of 120k product images from online retail platform. The dataset is enriched with answers from LLMs and used to fine-tune the model. This experimental model can be used for answering questions on product images in retail industry. Product meta data enrichment, Validation of human generated product description are some of the examples sue case. # Sample model predictions | Input Image | Prediction | |-------------------------------------------|--------------------------------| |image/png | kitchenaid artisann stand mixer| | | a bottle of milk sitting on a counter | |image/jpeg| dove sensitive skin lotion | |bread bag | bread bag with blue plastic handl| |image/png | bush ' s best white beans | ### How to use the model:
Click to expand ```python import requests from PIL import Image from transformers import BlipProcessor, BlipForConditionalGeneration processor = BlipProcessor.from_pretrained("quadranttechnologies/qhub-blip-image-captioning-finetuned") model = BlipForConditionalGeneration.from_pretrained("quadranttechnologies/qhub-blip-image-captioning-finetuned") img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' raw_image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB') # conditional image captioning text = "a photography of" inputs = processor(raw_image, text, return_tensors="pt") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) # unconditional image captioning inputs = processor(raw_image, return_tensors="pt") out = model.generate(**inputs) print(processor.decode(out[0], skip_special_tokens=True)) ```
## BibTex and citation info ``` @misc{https://doi.org/10.48550/arxiv.2201.12086, doi = {10.48550/ARXIV.2201.12086}, url = {https://arxiv.org/abs/2201.12086}, author = {Li, Junnan and Li, Dongxu and Xiong, Caiming and Hoi, Steven}, keywords = {Computer Vision and Pattern Recognition (cs.CV), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```