v0.32.0
Browse filesSee https://github.com/quic/ai-hub-models/releases/v0.32.0 for changelog.
- .gitattributes +1 -0
- DEPLOYMENT_MODEL_LICENSE.pdf +3 -0
- LICENSE +2 -0
- README.md +229 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
DEPLOYMENT_MODEL_LICENSE.pdf filter=lfs diff=lfs merge=lfs -text
|
DEPLOYMENT_MODEL_LICENSE.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4409f93b0e82531303b3e10f52f1fdfb56467a25f05b7441c6bbd8bb8a64b42c
|
3 |
+
size 109629
|
LICENSE
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
The license of the original trained model can be found at https://github.com/lllyasviel/ControlNet/blob/main/LICENSE.
|
2 |
+
The license for the deployable model files (.tflite, .onnx, .dlc, .bin, etc.) can be found in DEPLOYMENT_MODEL_LICENSE.pdf.
|
README.md
ADDED
@@ -0,0 +1,229 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: pytorch
|
3 |
+
license: other
|
4 |
+
tags:
|
5 |
+
- generative_ai
|
6 |
+
- android
|
7 |
+
pipeline_tag: unconditional-image-generation
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+

|
12 |
+
|
13 |
+
# ControlNet-Canny: Optimized for Mobile Deployment
|
14 |
+
## Generating visual arts from text prompt and input guiding image
|
15 |
+
|
16 |
+
|
17 |
+
On-device, high-resolution image synthesis from text and image prompts. ControlNet guides Stable-diffusion with provided input image to generate accurate images from given input prompt.
|
18 |
+
|
19 |
+
This model is an implementation of ControlNet-Canny found [here](https://github.com/lllyasviel/ControlNet).
|
20 |
+
|
21 |
+
|
22 |
+
This repository provides scripts to run ControlNet-Canny on Qualcomm® devices.
|
23 |
+
More details on model performance across various devices, can be found
|
24 |
+
[here](https://aihub.qualcomm.com/models/controlnet_canny).
|
25 |
+
|
26 |
+
|
27 |
+
### Model Details
|
28 |
+
|
29 |
+
- **Model Type:** Model_use_case.image_generation
|
30 |
+
- **Model Stats:**
|
31 |
+
- Input: Text prompt and input image as a reference
|
32 |
+
- Conditioning Input: Canny-Edge
|
33 |
+
- Text Encoder Number of parameters: 340M
|
34 |
+
- UNet Number of parameters: 865M
|
35 |
+
- VAE Decoder Number of parameters: 83M
|
36 |
+
- ControlNet Number of parameters: 361M
|
37 |
+
- Model size: 1.4GB
|
38 |
+
|
39 |
+
| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|
40 |
+
|---|---|---|---|---|---|---|---|---|
|
41 |
+
| text_encoder | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 5.37 ms | 0 - 3 MB | NPU | Use Export Script |
|
42 |
+
| text_encoder | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 5.903 ms | 0 - 10 MB | NPU | Use Export Script |
|
43 |
+
| text_encoder | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 5.395 ms | 0 - 2 MB | NPU | Use Export Script |
|
44 |
+
| text_encoder | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 5.412 ms | 0 - 2 MB | NPU | Use Export Script |
|
45 |
+
| text_encoder | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 5.903 ms | 0 - 10 MB | NPU | Use Export Script |
|
46 |
+
| text_encoder | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 5.432 ms | 0 - 3 MB | NPU | Use Export Script |
|
47 |
+
| text_encoder | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 5.743 ms | 0 - 3 MB | NPU | Use Export Script |
|
48 |
+
| text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 3.872 ms | 0 - 18 MB | NPU | Use Export Script |
|
49 |
+
| text_encoder | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 4.067 ms | 0 - 20 MB | NPU | Use Export Script |
|
50 |
+
| text_encoder | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 3.481 ms | 0 - 14 MB | NPU | Use Export Script |
|
51 |
+
| text_encoder | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 3.255 ms | 0 - 13 MB | NPU | Use Export Script |
|
52 |
+
| text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 5.792 ms | 1 - 1 MB | NPU | Use Export Script |
|
53 |
+
| text_encoder | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 5.958 ms | 158 - 158 MB | NPU | Use Export Script |
|
54 |
+
| unet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 110.879 ms | 13 - 15 MB | NPU | Use Export Script |
|
55 |
+
| unet | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 107.956 ms | 6 - 13 MB | NPU | Use Export Script |
|
56 |
+
| unet | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 116.595 ms | 13 - 15 MB | NPU | Use Export Script |
|
57 |
+
| unet | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 115.724 ms | 13 - 16 MB | NPU | Use Export Script |
|
58 |
+
| unet | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 107.956 ms | 6 - 13 MB | NPU | Use Export Script |
|
59 |
+
| unet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 117.156 ms | 13 - 16 MB | NPU | Use Export Script |
|
60 |
+
| unet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 116.818 ms | 0 - 883 MB | NPU | Use Export Script |
|
61 |
+
| unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 81.085 ms | 13 - 31 MB | NPU | Use Export Script |
|
62 |
+
| unet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 84.025 ms | 13 - 32 MB | NPU | Use Export Script |
|
63 |
+
| unet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 70.612 ms | 13 - 27 MB | NPU | Use Export Script |
|
64 |
+
| unet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 70.807 ms | 13 - 28 MB | NPU | Use Export Script |
|
65 |
+
| unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 116.726 ms | 13 - 13 MB | NPU | Use Export Script |
|
66 |
+
| unet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 117.502 ms | 829 - 829 MB | NPU | Use Export Script |
|
67 |
+
| vae | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 268.758 ms | 0 - 3 MB | NPU | Use Export Script |
|
68 |
+
| vae | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 248.983 ms | 0 - 10 MB | NPU | Use Export Script |
|
69 |
+
| vae | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 272.989 ms | 0 - 2 MB | NPU | Use Export Script |
|
70 |
+
| vae | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 284.628 ms | 0 - 2 MB | NPU | Use Export Script |
|
71 |
+
| vae | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 248.983 ms | 0 - 10 MB | NPU | Use Export Script |
|
72 |
+
| vae | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 270.831 ms | 0 - 3 MB | NPU | Use Export Script |
|
73 |
+
| vae | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 273.364 ms | 0 - 66 MB | NPU | Use Export Script |
|
74 |
+
| vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 205.993 ms | 0 - 18 MB | NPU | Use Export Script |
|
75 |
+
| vae | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 204.786 ms | 3 - 22 MB | NPU | Use Export Script |
|
76 |
+
| vae | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 194.607 ms | 0 - 14 MB | NPU | Use Export Script |
|
77 |
+
| vae | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 193.998 ms | 3 - 17 MB | NPU | Use Export Script |
|
78 |
+
| vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 266.935 ms | 0 - 0 MB | NPU | Use Export Script |
|
79 |
+
| vae | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 266.448 ms | 63 - 63 MB | NPU | Use Export Script |
|
80 |
+
| controlnet | w8a16 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_CONTEXT_BINARY | 83.197 ms | 2 - 4 MB | NPU | Use Export Script |
|
81 |
+
| controlnet | w8a16 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_CONTEXT_BINARY | 81.755 ms | 2 - 11 MB | NPU | Use Export Script |
|
82 |
+
| controlnet | w8a16 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_CONTEXT_BINARY | 83.451 ms | 2 - 5 MB | NPU | Use Export Script |
|
83 |
+
| controlnet | w8a16 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_CONTEXT_BINARY | 83.565 ms | 2 - 4 MB | NPU | Use Export Script |
|
84 |
+
| controlnet | w8a16 | SA8775P ADP | Qualcomm® SA8775P | QNN_CONTEXT_BINARY | 81.755 ms | 2 - 11 MB | NPU | Use Export Script |
|
85 |
+
| controlnet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_CONTEXT_BINARY | 83.39 ms | 2 - 5 MB | NPU | Use Export Script |
|
86 |
+
| controlnet | w8a16 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | PRECOMPILED_QNN_ONNX | 86.158 ms | 0 - 384 MB | NPU | Use Export Script |
|
87 |
+
| controlnet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_CONTEXT_BINARY | 58.723 ms | 2 - 21 MB | NPU | Use Export Script |
|
88 |
+
| controlnet | w8a16 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | PRECOMPILED_QNN_ONNX | 59.623 ms | 32 - 50 MB | NPU | Use Export Script |
|
89 |
+
| controlnet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_CONTEXT_BINARY | 56.385 ms | 2 - 16 MB | NPU | Use Export Script |
|
90 |
+
| controlnet | w8a16 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | PRECOMPILED_QNN_ONNX | 57.339 ms | 31 - 45 MB | NPU | Use Export Script |
|
91 |
+
| controlnet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_CONTEXT_BINARY | 85.054 ms | 2 - 2 MB | NPU | Use Export Script |
|
92 |
+
| controlnet | w8a16 | Snapdragon X Elite CRD | Snapdragon® X Elite | PRECOMPILED_QNN_ONNX | 80.108 ms | 351 - 351 MB | NPU | Use Export Script |
|
93 |
+
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
## Installation
|
98 |
+
|
99 |
+
|
100 |
+
Install the package via pip:
|
101 |
+
```bash
|
102 |
+
pip install "qai-hub-models[controlnet-canny]"
|
103 |
+
```
|
104 |
+
|
105 |
+
|
106 |
+
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
107 |
+
|
108 |
+
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
109 |
+
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
|
110 |
+
|
111 |
+
With this API token, you can configure your client to run models on the cloud
|
112 |
+
hosted devices.
|
113 |
+
```bash
|
114 |
+
qai-hub configure --api_token API_TOKEN
|
115 |
+
```
|
116 |
+
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
## Demo off target
|
121 |
+
|
122 |
+
The package contains a simple end-to-end demo that downloads pre-trained
|
123 |
+
weights and runs this model on a sample input.
|
124 |
+
|
125 |
+
```bash
|
126 |
+
python -m qai_hub_models.models.controlnet_canny.demo
|
127 |
+
```
|
128 |
+
|
129 |
+
The above demo runs a reference implementation of pre-processing, model
|
130 |
+
inference, and post processing.
|
131 |
+
|
132 |
+
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
|
133 |
+
environment, please add the following to your cell (instead of the above).
|
134 |
+
```
|
135 |
+
%run -m qai_hub_models.models.controlnet_canny.demo
|
136 |
+
```
|
137 |
+
|
138 |
+
|
139 |
+
### Run model on a cloud-hosted device
|
140 |
+
|
141 |
+
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
|
142 |
+
device. This script does the following:
|
143 |
+
* Performance check on-device on a cloud-hosted device
|
144 |
+
* Downloads compiled assets that can be deployed on-device for Android.
|
145 |
+
* Accuracy check between PyTorch and on-device outputs.
|
146 |
+
|
147 |
+
```bash
|
148 |
+
python -m qai_hub_models.models.controlnet_canny.export
|
149 |
+
```
|
150 |
+
```
|
151 |
+
Profiling Results
|
152 |
+
------------------------------------------------------------
|
153 |
+
text_encoder
|
154 |
+
Device : cs_8550 (ANDROID 12)
|
155 |
+
Runtime : QNN_CONTEXT_BINARY
|
156 |
+
Estimated inference time (ms) : 5.4
|
157 |
+
Estimated peak memory usage (MB): [0, 3]
|
158 |
+
Total # Ops : 438
|
159 |
+
Compute Unit(s) : npu (438 ops) gpu (0 ops) cpu (0 ops)
|
160 |
+
|
161 |
+
------------------------------------------------------------
|
162 |
+
unet
|
163 |
+
Device : cs_8550 (ANDROID 12)
|
164 |
+
Runtime : QNN_CONTEXT_BINARY
|
165 |
+
Estimated inference time (ms) : 110.9
|
166 |
+
Estimated peak memory usage (MB): [13, 15]
|
167 |
+
Total # Ops : 4055
|
168 |
+
Compute Unit(s) : npu (4055 ops) gpu (0 ops) cpu (0 ops)
|
169 |
+
|
170 |
+
------------------------------------------------------------
|
171 |
+
vae
|
172 |
+
Device : cs_8550 (ANDROID 12)
|
173 |
+
Runtime : QNN_CONTEXT_BINARY
|
174 |
+
Estimated inference time (ms) : 268.8
|
175 |
+
Estimated peak memory usage (MB): [0, 3]
|
176 |
+
Total # Ops : 175
|
177 |
+
Compute Unit(s) : npu (175 ops) gpu (0 ops) cpu (0 ops)
|
178 |
+
|
179 |
+
------------------------------------------------------------
|
180 |
+
controlnet
|
181 |
+
Device : cs_8550 (ANDROID 12)
|
182 |
+
Runtime : QNN_CONTEXT_BINARY
|
183 |
+
Estimated inference time (ms) : 83.2
|
184 |
+
Estimated peak memory usage (MB): [2, 4]
|
185 |
+
Total # Ops : 664
|
186 |
+
Compute Unit(s) : npu (664 ops) gpu (0 ops) cpu (0 ops)
|
187 |
+
```
|
188 |
+
|
189 |
+
|
190 |
+
|
191 |
+
|
192 |
+
|
193 |
+
## Deploying compiled model to Android
|
194 |
+
|
195 |
+
|
196 |
+
The models can be deployed using multiple runtimes:
|
197 |
+
- TensorFlow Lite (`.tflite` export): [This
|
198 |
+
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
|
199 |
+
guide to deploy the .tflite model in an Android application.
|
200 |
+
|
201 |
+
|
202 |
+
- QNN (`.so` export ): This [sample
|
203 |
+
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
|
204 |
+
provides instructions on how to use the `.so` shared library in an Android application.
|
205 |
+
|
206 |
+
|
207 |
+
## View on Qualcomm® AI Hub
|
208 |
+
Get more details on ControlNet-Canny's performance across various devices [here](https://aihub.qualcomm.com/models/controlnet_canny).
|
209 |
+
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
210 |
+
|
211 |
+
|
212 |
+
## License
|
213 |
+
* The license for the original implementation of ControlNet-Canny can be found
|
214 |
+
[here](https://github.com/lllyasviel/ControlNet/blob/main/LICENSE).
|
215 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
## References
|
220 |
+
* [Adding Conditional Control to Text-to-Image Diffusion Models](https://arxiv.org/abs/2302.05543)
|
221 |
+
* [Source Model Implementation](https://github.com/lllyasviel/ControlNet)
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
## Community
|
226 |
+
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
227 |
+
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
228 |
+
|
229 |
+
|