qaihm-bot commited on
Commit
5075665
·
verified ·
1 Parent(s): 5ceeb5d

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +26 -18
README.md CHANGED
@@ -14,7 +14,7 @@ tags:
14
 
15
  DeepLabV3 is designed for semantic segmentation at multiple scales, trained on the COCO dataset. It uses ResNet50 as a backbone.
16
 
17
- This model is an implementation of DeepLabV3-ResNet50 found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/deeplabv3.py).
18
  This repository provides scripts to run DeepLabV3-ResNet50 on Qualcomm® devices.
19
  More details on model performance across various devices, can be found
20
  [here](https://aihub.qualcomm.com/models/deeplabv3_resnet50).
@@ -30,14 +30,18 @@ More details on model performance across various devices, can be found
30
  - Model size: 151 MB
31
  - Number of output classes: 21
32
 
 
 
 
 
 
 
 
 
 
33
 
34
 
35
 
36
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
37
- | ---|---|---|---|---|---|---|---|
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 291.699 ms | 0 - 142 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite)
39
-
40
-
41
 
42
  ## Installation
43
 
@@ -92,16 +96,16 @@ device. This script does the following:
92
  ```bash
93
  python -m qai_hub_models.models.deeplabv3_resnet50.export
94
  ```
95
-
96
  ```
97
- Profile Job summary of DeepLabV3-ResNet50
98
- --------------------------------------------------
99
- Device: SA8255 (Proxy) (13)
100
- Estimated Inference Time: 290.54 ms
101
- Estimated Peak Memory Range: 0.02-290.81 MB
102
- Compute Units: GPU (95) | Total (95)
103
-
104
-
 
105
  ```
106
 
107
 
@@ -200,15 +204,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
200
  Get more details on DeepLabV3-ResNet50's performance across various devices [here](https://aihub.qualcomm.com/models/deeplabv3_resnet50).
201
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
202
 
 
203
  ## License
204
- - The license for the original implementation of DeepLabV3-ResNet50 can be found
205
- [here](https://github.com/pytorch/vision/blob/main/LICENSE).
206
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
 
207
 
208
  ## References
209
  * [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)
210
  * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/deeplabv3.py)
211
 
 
 
212
  ## Community
213
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
214
  * For questions or feedback please [reach out to us](mailto:[email protected]).
 
14
 
15
  DeepLabV3 is designed for semantic segmentation at multiple scales, trained on the COCO dataset. It uses ResNet50 as a backbone.
16
 
17
+ This model is an implementation of DeepLabV3-ResNet50 found [here]({source_repo}).
18
  This repository provides scripts to run DeepLabV3-ResNet50 on Qualcomm® devices.
19
  More details on model performance across various devices, can be found
20
  [here](https://aihub.qualcomm.com/models/deeplabv3_resnet50).
 
30
  - Model size: 151 MB
31
  - Number of output classes: 21
32
 
33
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
34
+ |---|---|---|---|---|---|---|---|---|
35
+ | DeepLabV3-ResNet50 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 291.789 ms | 21 - 191 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
36
+ | DeepLabV3-ResNet50 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 225.775 ms | 21 - 43 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
37
+ | DeepLabV3-ResNet50 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 289.97 ms | 0 - 233 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
38
+ | DeepLabV3-ResNet50 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 290.802 ms | 0 - 142 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
39
+ | DeepLabV3-ResNet50 | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 289.879 ms | 2 - 139 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
40
+ | DeepLabV3-ResNet50 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 290.181 ms | 0 - 142 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
41
+ | DeepLabV3-ResNet50 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 757.728 ms | 21 - 51 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
42
 
43
 
44
 
 
 
 
 
 
45
 
46
  ## Installation
47
 
 
96
  ```bash
97
  python -m qai_hub_models.models.deeplabv3_resnet50.export
98
  ```
 
99
  ```
100
+ Profiling Results
101
+ ------------------------------------------------------------
102
+ DeepLabV3-ResNet50
103
+ Device : Samsung Galaxy S23 (13)
104
+ Runtime : TFLITE
105
+ Estimated inference time (ms) : 291.8
106
+ Estimated peak memory usage (MB): [21, 191]
107
+ Total # Ops : 95
108
+ Compute Unit(s) : GPU (95 ops)
109
  ```
110
 
111
 
 
204
  Get more details on DeepLabV3-ResNet50's performance across various devices [here](https://aihub.qualcomm.com/models/deeplabv3_resnet50).
205
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
206
 
207
+
208
  ## License
209
+ * The license for the original implementation of DeepLabV3-ResNet50 can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE).
210
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
211
+
212
+
213
 
214
  ## References
215
  * [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)
216
  * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/deeplabv3.py)
217
 
218
+
219
+
220
  ## Community
221
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
222
  * For questions or feedback please [reach out to us](mailto:[email protected]).