Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ tags:
|
|
14 |
|
15 |
DeepLabV3 is designed for semantic segmentation at multiple scales, trained on the COCO dataset. It uses ResNet50 as a backbone.
|
16 |
|
17 |
-
This model is an implementation of DeepLabV3-ResNet50 found [here](
|
18 |
This repository provides scripts to run DeepLabV3-ResNet50 on Qualcomm® devices.
|
19 |
More details on model performance across various devices, can be found
|
20 |
[here](https://aihub.qualcomm.com/models/deeplabv3_resnet50).
|
@@ -30,14 +30,18 @@ More details on model performance across various devices, can be found
|
|
30 |
- Model size: 151 MB
|
31 |
- Number of output classes: 21
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
|
36 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
-
| ---|---|---|---|---|---|---|---|
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 291.699 ms | 0 - 142 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite)
|
39 |
-
|
40 |
-
|
41 |
|
42 |
## Installation
|
43 |
|
@@ -92,16 +96,16 @@ device. This script does the following:
|
|
92 |
```bash
|
93 |
python -m qai_hub_models.models.deeplabv3_resnet50.export
|
94 |
```
|
95 |
-
|
96 |
```
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
|
|
105 |
```
|
106 |
|
107 |
|
@@ -200,15 +204,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
200 |
Get more details on DeepLabV3-ResNet50's performance across various devices [here](https://aihub.qualcomm.com/models/deeplabv3_resnet50).
|
201 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
202 |
|
|
|
203 |
## License
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
207 |
|
208 |
## References
|
209 |
* [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)
|
210 |
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/deeplabv3.py)
|
211 |
|
|
|
|
|
212 |
## Community
|
213 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
214 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
14 |
|
15 |
DeepLabV3 is designed for semantic segmentation at multiple scales, trained on the COCO dataset. It uses ResNet50 as a backbone.
|
16 |
|
17 |
+
This model is an implementation of DeepLabV3-ResNet50 found [here]({source_repo}).
|
18 |
This repository provides scripts to run DeepLabV3-ResNet50 on Qualcomm® devices.
|
19 |
More details on model performance across various devices, can be found
|
20 |
[here](https://aihub.qualcomm.com/models/deeplabv3_resnet50).
|
|
|
30 |
- Model size: 151 MB
|
31 |
- Number of output classes: 21
|
32 |
|
33 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
34 |
+
|---|---|---|---|---|---|---|---|---|
|
35 |
+
| DeepLabV3-ResNet50 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 291.789 ms | 21 - 191 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
36 |
+
| DeepLabV3-ResNet50 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 225.775 ms | 21 - 43 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
37 |
+
| DeepLabV3-ResNet50 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 289.97 ms | 0 - 233 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
38 |
+
| DeepLabV3-ResNet50 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 290.802 ms | 0 - 142 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
39 |
+
| DeepLabV3-ResNet50 | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 289.879 ms | 2 - 139 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
40 |
+
| DeepLabV3-ResNet50 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 290.181 ms | 0 - 142 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
41 |
+
| DeepLabV3-ResNet50 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 757.728 ms | 21 - 51 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite) |
|
42 |
|
43 |
|
44 |
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
## Installation
|
47 |
|
|
|
96 |
```bash
|
97 |
python -m qai_hub_models.models.deeplabv3_resnet50.export
|
98 |
```
|
|
|
99 |
```
|
100 |
+
Profiling Results
|
101 |
+
------------------------------------------------------------
|
102 |
+
DeepLabV3-ResNet50
|
103 |
+
Device : Samsung Galaxy S23 (13)
|
104 |
+
Runtime : TFLITE
|
105 |
+
Estimated inference time (ms) : 291.8
|
106 |
+
Estimated peak memory usage (MB): [21, 191]
|
107 |
+
Total # Ops : 95
|
108 |
+
Compute Unit(s) : GPU (95 ops)
|
109 |
```
|
110 |
|
111 |
|
|
|
204 |
Get more details on DeepLabV3-ResNet50's performance across various devices [here](https://aihub.qualcomm.com/models/deeplabv3_resnet50).
|
205 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
206 |
|
207 |
+
|
208 |
## License
|
209 |
+
* The license for the original implementation of DeepLabV3-ResNet50 can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
210 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
211 |
+
|
212 |
+
|
213 |
|
214 |
## References
|
215 |
* [Rethinking Atrous Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1706.05587)
|
216 |
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/segmentation/deeplabv3.py)
|
217 |
|
218 |
+
|
219 |
+
|
220 |
## Community
|
221 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
222 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|