qaihm-bot commited on
Commit
93c286d
·
verified ·
1 Parent(s): ae13cb0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +27 -3
README.md CHANGED
@@ -25,15 +25,15 @@ More details on model performance across various devices, can be found
25
  - **Model Type:** Semantic segmentation
26
  - **Model Stats:**
27
  - Model checkpoint: COCO_WITH_VOC_LABELS_V1
28
- - Input resolution: 224x224
29
  - Number of parameters: 39.6M
30
  - Model size: 151 MB
31
 
32
 
33
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
34
  | ---|---|---|---|---|---|---|---|
35
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 58.164 ms | 0 - 164 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite)
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 145.136 ms | 1 - 8 MB | FP16 | GPU | [DeepLabV3-ResNet50.so](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.so)
37
 
38
 
39
  ## Installation
@@ -90,6 +90,16 @@ device. This script does the following:
90
  python -m qai_hub_models.models.deeplabv3_resnet50.export
91
  ```
92
 
 
 
 
 
 
 
 
 
 
 
93
  ## How does this work?
94
 
95
  This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/DeepLabV3-ResNet50/export.py)
@@ -169,6 +179,20 @@ spot check the output with expected output.
169
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
170
 
171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
  ## Deploying compiled model to Android
174
 
 
25
  - **Model Type:** Semantic segmentation
26
  - **Model Stats:**
27
  - Model checkpoint: COCO_WITH_VOC_LABELS_V1
28
+ - Input resolution: 513x513
29
  - Number of parameters: 39.6M
30
  - Model size: 151 MB
31
 
32
 
33
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
34
  | ---|---|---|---|---|---|---|---|
35
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 290.847 ms | 0 - 214 MB | FP16 | GPU | [DeepLabV3-ResNet50.tflite](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.tflite)
36
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 810.711 ms | 3 - 11 MB | FP16 | GPU | [DeepLabV3-ResNet50.so](https://huggingface.co/qualcomm/DeepLabV3-ResNet50/blob/main/DeepLabV3-ResNet50.so)
37
 
38
 
39
  ## Installation
 
90
  python -m qai_hub_models.models.deeplabv3_resnet50.export
91
  ```
92
 
93
+ ```
94
+ Profile Job summary of DeepLabV3-ResNet50
95
+ --------------------------------------------------
96
+ Device: QCS8550 (Proxy) (12)
97
+ Estimated Inference Time: 821.17 ms
98
+ Estimated Peak Memory Range: 3.28-11.89 MB
99
+ Compute Units: GPU (83) | Total (83)
100
+
101
+
102
+ ```
103
  ## How does this work?
104
 
105
  This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/DeepLabV3-ResNet50/export.py)
 
179
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
180
 
181
 
182
+ ## Run demo on a cloud-hosted device
183
+
184
+ You can also run the demo on-device.
185
+
186
+ ```bash
187
+ python -m qai_hub_models.models.deeplabv3_resnet50.demo --on-device
188
+ ```
189
+
190
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
191
+ environment, please add the following to your cell (instead of the above).
192
+ ```
193
+ %run -m qai_hub_models.models.deeplabv3_resnet50.demo -- --on-device
194
+ ```
195
+
196
 
197
  ## Deploying compiled model to Android
198