qaihm-bot commited on
Commit
216b476
·
verified ·
1 Parent(s): ee69b6b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +319 -0
README.md ADDED
@@ -0,0 +1,319 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: apache-2.0
4
+ tags:
5
+ - android
6
+ pipeline_tag: image-to-text
7
+
8
+ ---
9
+
10
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/easyocr/web-assets/model_demo.png)
11
+
12
+ # EasyOCR: Optimized for Mobile Deployment
13
+ ## Ready-to-use OCR with 80+ supported languages and all popular writing scripts
14
+
15
+
16
+ EasyOCR is a machine learning model that can recognize text in images. It supports 80+ supported languages and all popular writing scripts.
17
+
18
+ This model is an implementation of EasyOCR found [here](https://github.com/JaidedAI/EasyOCR).
19
+
20
+
21
+ This repository provides scripts to run EasyOCR on Qualcomm® devices.
22
+ More details on model performance across various devices, can be found
23
+ [here](https://aihub.qualcomm.com/models/easyocr).
24
+
25
+
26
+ ### Model Details
27
+
28
+ - **Model Type:** Image to text
29
+ - **Model Stats:**
30
+ - Model checkpoint: easyocr-small-stage1
31
+ - Input resolution: 384x384
32
+ - Number of parameters (EasyOCRDetector): 20.8M
33
+ - Model size (EasyOCRDetector): 79.2 MB
34
+ - Number of parameters (EasyOCRRecognizer): 3.84M
35
+ - Model size (EasyOCRRecognizer): 14.7 MB
36
+
37
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
+ |---|---|---|---|---|---|---|---|---|
39
+ | EasyOCRDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 41.189 ms | 0 - 136 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
40
+ | EasyOCRDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 39.017 ms | 6 - 9 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.so) |
41
+ | EasyOCRDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 40.015 ms | 34 - 181 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) |
42
+ | EasyOCRDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 30.181 ms | 14 - 45 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
43
+ | EasyOCRDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 29.323 ms | 6 - 25 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.so) |
44
+ | EasyOCRDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 29.584 ms | 38 - 75 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) |
45
+ | EasyOCRDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 28.753 ms | 15 - 45 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
46
+ | EasyOCRDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 24.26 ms | 6 - 36 MB | FP16 | NPU | Use Export Script |
47
+ | EasyOCRDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 28.097 ms | 43 - 78 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) |
48
+ | EasyOCRDetector | SA7255P ADP | SA7255P | TFLITE | 2113.678 ms | 3 - 28 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
49
+ | EasyOCRDetector | SA7255P ADP | SA7255P | QNN | 2111.684 ms | 0 - 8 MB | FP16 | NPU | Use Export Script |
50
+ | EasyOCRDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 41.731 ms | 0 - 97 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
51
+ | EasyOCRDetector | SA8255 (Proxy) | SA8255P Proxy | QNN | 38.998 ms | 6 - 8 MB | FP16 | NPU | Use Export Script |
52
+ | EasyOCRDetector | SA8295P ADP | SA8295P | TFLITE | 78.45 ms | 16 - 42 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
53
+ | EasyOCRDetector | SA8295P ADP | SA8295P | QNN | 76.549 ms | 0 - 11 MB | FP16 | NPU | Use Export Script |
54
+ | EasyOCRDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 42.824 ms | 0 - 145 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
55
+ | EasyOCRDetector | SA8650 (Proxy) | SA8650P Proxy | QNN | 40.764 ms | 6 - 8 MB | FP16 | NPU | Use Export Script |
56
+ | EasyOCRDetector | SA8775P ADP | SA8775P | TFLITE | 88.536 ms | 16 - 41 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
57
+ | EasyOCRDetector | SA8775P ADP | SA8775P | QNN | 86.522 ms | 1 - 9 MB | FP16 | NPU | Use Export Script |
58
+ | EasyOCRDetector | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 2113.678 ms | 3 - 28 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
59
+ | EasyOCRDetector | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 2111.684 ms | 0 - 8 MB | FP16 | NPU | Use Export Script |
60
+ | EasyOCRDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 41.678 ms | 0 - 126 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
61
+ | EasyOCRDetector | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 39.278 ms | 6 - 8 MB | FP16 | NPU | Use Export Script |
62
+ | EasyOCRDetector | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 88.536 ms | 16 - 41 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
63
+ | EasyOCRDetector | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 86.522 ms | 1 - 9 MB | FP16 | NPU | Use Export Script |
64
+ | EasyOCRDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 80.295 ms | 16 - 48 MB | FP16 | NPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.tflite) |
65
+ | EasyOCRDetector | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 69.9 ms | 6 - 37 MB | FP16 | NPU | Use Export Script |
66
+ | EasyOCRDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 39.87 ms | 6 - 6 MB | FP16 | NPU | Use Export Script |
67
+ | EasyOCRDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 41.319 ms | 66 - 66 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRDetector.onnx) |
68
+ | EasyOCRRecognizer | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 109.812 ms | 6 - 8 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
69
+ | EasyOCRRecognizer | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 20.483 ms | 0 - 3 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.so) |
70
+ | EasyOCRRecognizer | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 21.731 ms | 0 - 24 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) |
71
+ | EasyOCRRecognizer | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 108.852 ms | 2 - 20 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
72
+ | EasyOCRRecognizer | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 14.237 ms | 0 - 16 MB | FP16 | NPU | [EasyOCR.so](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.so) |
73
+ | EasyOCRRecognizer | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 16.212 ms | 1 - 24 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) |
74
+ | EasyOCRRecognizer | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 107.149 ms | 14 - 30 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
75
+ | EasyOCRRecognizer | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 20.63 ms | 0 - 346 MB | FP16 | NPU | Use Export Script |
76
+ | EasyOCRRecognizer | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 17.677 ms | 0 - 18 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) |
77
+ | EasyOCRRecognizer | SA7255P ADP | SA7255P | TFLITE | 565.404 ms | 9 - 17 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
78
+ | EasyOCRRecognizer | SA7255P ADP | SA7255P | QNN | 285.155 ms | 0 - 8 MB | FP16 | NPU | Use Export Script |
79
+ | EasyOCRRecognizer | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 124.344 ms | 9 - 11 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
80
+ | EasyOCRRecognizer | SA8255 (Proxy) | SA8255P Proxy | QNN | 20.321 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
81
+ | EasyOCRRecognizer | SA8295P ADP | SA8295P | TFLITE | 214.709 ms | 8 - 18 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
82
+ | EasyOCRRecognizer | SA8295P ADP | SA8295P | QNN | 30.834 ms | 0 - 12 MB | FP16 | NPU | Use Export Script |
83
+ | EasyOCRRecognizer | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 101.784 ms | 7 - 11 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
84
+ | EasyOCRRecognizer | SA8650 (Proxy) | SA8650P Proxy | QNN | 20.407 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
85
+ | EasyOCRRecognizer | SA8775P ADP | SA8775P | TFLITE | 415.153 ms | 6 - 14 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
86
+ | EasyOCRRecognizer | SA8775P ADP | SA8775P | QNN | 29.021 ms | 0 - 7 MB | FP16 | NPU | Use Export Script |
87
+ | EasyOCRRecognizer | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 565.404 ms | 9 - 17 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
88
+ | EasyOCRRecognizer | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 285.155 ms | 0 - 8 MB | FP16 | NPU | Use Export Script |
89
+ | EasyOCRRecognizer | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 108.193 ms | 7 - 10 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
90
+ | EasyOCRRecognizer | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 20.315 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
91
+ | EasyOCRRecognizer | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 415.153 ms | 6 - 14 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
92
+ | EasyOCRRecognizer | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 29.021 ms | 0 - 7 MB | FP16 | NPU | Use Export Script |
93
+ | EasyOCRRecognizer | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 210.333 ms | 9 - 25 MB | FP32 | CPU | [EasyOCR.tflite](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.tflite) |
94
+ | EasyOCRRecognizer | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 34.309 ms | 0 - 151 MB | FP16 | NPU | Use Export Script |
95
+ | EasyOCRRecognizer | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 21.364 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |
96
+ | EasyOCRRecognizer | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 19.37 ms | 0 - 0 MB | FP16 | NPU | [EasyOCR.onnx](https://huggingface.co/qualcomm/EasyOCR/blob/main/EasyOCRRecognizer.onnx) |
97
+
98
+
99
+
100
+
101
+ ## Installation
102
+
103
+
104
+ Install the package via pip:
105
+ ```bash
106
+ pip install "qai-hub-models[easyocr]"
107
+ ```
108
+
109
+
110
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
111
+
112
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
113
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
114
+
115
+ With this API token, you can configure your client to run models on the cloud
116
+ hosted devices.
117
+ ```bash
118
+ qai-hub configure --api_token API_TOKEN
119
+ ```
120
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
121
+
122
+
123
+
124
+ ## Demo off target
125
+
126
+ The package contains a simple end-to-end demo that downloads pre-trained
127
+ weights and runs this model on a sample input.
128
+
129
+ ```bash
130
+ python -m qai_hub_models.models.easyocr.demo
131
+ ```
132
+
133
+ The above demo runs a reference implementation of pre-processing, model
134
+ inference, and post processing.
135
+
136
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
137
+ environment, please add the following to your cell (instead of the above).
138
+ ```
139
+ %run -m qai_hub_models.models.easyocr.demo
140
+ ```
141
+
142
+
143
+ ### Run model on a cloud-hosted device
144
+
145
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
146
+ device. This script does the following:
147
+ * Performance check on-device on a cloud-hosted device
148
+ * Downloads compiled assets that can be deployed on-device for Android.
149
+ * Accuracy check between PyTorch and on-device outputs.
150
+
151
+ ```bash
152
+ python -m qai_hub_models.models.easyocr.export
153
+ ```
154
+ ```
155
+ Profiling Results
156
+ ------------------------------------------------------------
157
+ EasyOCRDetector
158
+ Device : Samsung Galaxy S23 (13)
159
+ Runtime : TFLITE
160
+ Estimated inference time (ms) : 41.2
161
+ Estimated peak memory usage (MB): [0, 136]
162
+ Total # Ops : 42
163
+ Compute Unit(s) : NPU (42 ops)
164
+
165
+ ------------------------------------------------------------
166
+ EasyOCRRecognizer
167
+ Device : Samsung Galaxy S23 (13)
168
+ Runtime : TFLITE
169
+ Estimated inference time (ms) : 109.8
170
+ Estimated peak memory usage (MB): [6, 8]
171
+ Total # Ops : 136
172
+ Compute Unit(s) : CPU (136 ops)
173
+ ```
174
+
175
+
176
+ ## How does this work?
177
+
178
+ This [export script](https://aihub.qualcomm.com/models/easyocr/qai_hub_models/models/EasyOCR/export.py)
179
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
180
+ on-device. Lets go through each step below in detail:
181
+
182
+ Step 1: **Compile model for on-device deployment**
183
+
184
+ To compile a PyTorch model for on-device deployment, we first trace the model
185
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
186
+
187
+ ```python
188
+ import torch
189
+
190
+ import qai_hub as hub
191
+ from qai_hub_models.models.easyocr import Model
192
+
193
+ # Load the model
194
+ model = Model.from_pretrained()
195
+ detector_model = model.detector
196
+ recognizer_model = model.recognizer
197
+
198
+ # Device
199
+ device = hub.Device("Samsung Galaxy S23")
200
+
201
+ # Trace model
202
+ detector_input_shape = detector_model.get_input_spec()
203
+ detector_sample_inputs = detector_model.sample_inputs()
204
+
205
+ traced_detector_model = torch.jit.trace(detector_model, [torch.tensor(data[0]) for _, data in detector_sample_inputs.items()])
206
+
207
+ # Compile model on a specific device
208
+ detector_compile_job = hub.submit_compile_job(
209
+ model=traced_detector_model ,
210
+ device=device,
211
+ input_specs=detector_model.get_input_spec(),
212
+ )
213
+
214
+ # Get target model to run on-device
215
+ detector_target_model = detector_compile_job.get_target_model()
216
+ # Trace model
217
+ recognizer_input_shape = recognizer_model.get_input_spec()
218
+ recognizer_sample_inputs = recognizer_model.sample_inputs()
219
+
220
+ traced_recognizer_model = torch.jit.trace(recognizer_model, [torch.tensor(data[0]) for _, data in recognizer_sample_inputs.items()])
221
+
222
+ # Compile model on a specific device
223
+ recognizer_compile_job = hub.submit_compile_job(
224
+ model=traced_recognizer_model ,
225
+ device=device,
226
+ input_specs=recognizer_model.get_input_spec(),
227
+ )
228
+
229
+ # Get target model to run on-device
230
+ recognizer_target_model = recognizer_compile_job.get_target_model()
231
+
232
+ ```
233
+
234
+
235
+ Step 2: **Performance profiling on cloud-hosted device**
236
+
237
+ After compiling models from step 1. Models can be profiled model on-device using the
238
+ `target_model`. Note that this scripts runs the model on a device automatically
239
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
240
+ provided job URL to view a variety of on-device performance metrics.
241
+ ```python
242
+ detector_profile_job = hub.submit_profile_job(
243
+ model=detector_target_model,
244
+ device=device,
245
+ )
246
+ recognizer_profile_job = hub.submit_profile_job(
247
+ model=recognizer_target_model,
248
+ device=device,
249
+ )
250
+
251
+ ```
252
+
253
+ Step 3: **Verify on-device accuracy**
254
+
255
+ To verify the accuracy of the model on-device, you can run on-device inference
256
+ on sample input data on the same cloud hosted device.
257
+ ```python
258
+ detector_input_data = detector_model.sample_inputs()
259
+ detector_inference_job = hub.submit_inference_job(
260
+ model=detector_target_model,
261
+ device=device,
262
+ inputs=detector_input_data,
263
+ )
264
+ detector_inference_job.download_output_data()
265
+ recognizer_input_data = recognizer_model.sample_inputs()
266
+ recognizer_inference_job = hub.submit_inference_job(
267
+ model=recognizer_target_model,
268
+ device=device,
269
+ inputs=recognizer_input_data,
270
+ )
271
+ recognizer_inference_job.download_output_data()
272
+
273
+ ```
274
+ With the output of the model, you can compute like PSNR, relative errors or
275
+ spot check the output with expected output.
276
+
277
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
278
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
279
+
280
+
281
+
282
+
283
+ ## Deploying compiled model to Android
284
+
285
+
286
+ The models can be deployed using multiple runtimes:
287
+ - TensorFlow Lite (`.tflite` export): [This
288
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
289
+ guide to deploy the .tflite model in an Android application.
290
+
291
+
292
+ - QNN (`.so` export ): This [sample
293
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
294
+ provides instructions on how to use the `.so` shared library in an Android application.
295
+
296
+
297
+ ## View on Qualcomm® AI Hub
298
+ Get more details on EasyOCR's performance across various devices [here](https://aihub.qualcomm.com/models/easyocr).
299
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
300
+
301
+
302
+ ## License
303
+ * The license for the original implementation of EasyOCR can be found
304
+ [here](https://github.com/JaidedAI/EasyOCR/blob/master/LICENSE).
305
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
306
+
307
+
308
+
309
+ ## References
310
+ * [None](None)
311
+ * [Source Model Implementation](https://github.com/JaidedAI/EasyOCR)
312
+
313
+
314
+
315
+ ## Community
316
+ * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
317
+ * For questions or feedback please [reach out to us](mailto:[email protected]).
318
+
319
+