Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -17,7 +17,7 @@ tags:
|
|
17 |
|
18 |
FFNet-40S is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.
|
19 |
|
20 |
-
This model is an implementation of FFNet-40S found [here](
|
21 |
This repository provides scripts to run FFNet-40S on Qualcomm® devices.
|
22 |
More details on model performance across various devices, can be found
|
23 |
[here](https://aihub.qualcomm.com/models/ffnet_40s).
|
@@ -33,15 +33,32 @@ More details on model performance across various devices, can be found
|
|
33 |
- Model size: 53.1 MB
|
34 |
- Number of output classes: 19
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
|
38 |
|
39 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
-
| ---|---|---|---|---|---|---|---|
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 17.077 ms | 2 - 4 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite)
|
42 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 17.566 ms | 26 - 40 MB | FP16 | NPU | [FFNet-40S.so](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.so)
|
43 |
-
|
44 |
-
|
45 |
|
46 |
## Installation
|
47 |
|
@@ -97,16 +114,16 @@ device. This script does the following:
|
|
97 |
```bash
|
98 |
python -m qai_hub_models.models.ffnet_40s.export
|
99 |
```
|
100 |
-
|
101 |
```
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
110 |
```
|
111 |
|
112 |
|
@@ -205,15 +222,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
205 |
Get more details on FFNet-40S's performance across various devices [here](https://aihub.qualcomm.com/models/ffnet_40s).
|
206 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
207 |
|
|
|
208 |
## License
|
209 |
-
|
210 |
-
|
211 |
-
|
|
|
212 |
|
213 |
## References
|
214 |
* [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236)
|
215 |
* [Source Model Implementation](https://github.com/Qualcomm-AI-research/FFNet)
|
216 |
|
|
|
|
|
217 |
## Community
|
218 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
219 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
17 |
|
18 |
FFNet-40S is a "fuss-free network" that segments street scene images with per-pixel classes like road, sidewalk, and pedestrian. Trained on the Cityscapes dataset.
|
19 |
|
20 |
+
This model is an implementation of FFNet-40S found [here]({source_repo}).
|
21 |
This repository provides scripts to run FFNet-40S on Qualcomm® devices.
|
22 |
More details on model performance across various devices, can be found
|
23 |
[here](https://aihub.qualcomm.com/models/ffnet_40s).
|
|
|
33 |
- Model size: 53.1 MB
|
34 |
- Number of output classes: 19
|
35 |
|
36 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
+
|---|---|---|---|---|---|---|---|---|
|
38 |
+
| FFNet-40S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 17.007 ms | 2 - 5 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
39 |
+
| FFNet-40S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 17.621 ms | 25 - 49 MB | FP16 | NPU | [FFNet-40S.so](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.so) |
|
40 |
+
| FFNet-40S | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 24.964 ms | 26 - 28 MB | FP16 | NPU | [FFNet-40S.onnx](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.onnx) |
|
41 |
+
| FFNet-40S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 14.889 ms | 2 - 102 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
42 |
+
| FFNet-40S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 15.114 ms | 24 - 57 MB | FP16 | NPU | [FFNet-40S.so](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.so) |
|
43 |
+
| FFNet-40S | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 22.02 ms | 27 - 151 MB | FP16 | NPU | [FFNet-40S.onnx](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.onnx) |
|
44 |
+
| FFNet-40S | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 16.785 ms | 2 - 5 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
45 |
+
| FFNet-40S | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 16.327 ms | 24 - 25 MB | FP16 | NPU | Use Export Script |
|
46 |
+
| FFNet-40S | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 16.799 ms | 2 - 4 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
47 |
+
| FFNet-40S | SA8255 (Proxy) | SA8255P Proxy | QNN | 16.511 ms | 24 - 25 MB | FP16 | NPU | Use Export Script |
|
48 |
+
| FFNet-40S | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 16.774 ms | 2 - 5 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
49 |
+
| FFNet-40S | SA8775 (Proxy) | SA8775P Proxy | QNN | 16.85 ms | 24 - 25 MB | FP16 | NPU | Use Export Script |
|
50 |
+
| FFNet-40S | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 16.854 ms | 2 - 5 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
51 |
+
| FFNet-40S | SA8650 (Proxy) | SA8650P Proxy | QNN | 16.816 ms | 24 - 25 MB | FP16 | NPU | Use Export Script |
|
52 |
+
| FFNet-40S | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 27.915 ms | 2 - 93 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
53 |
+
| FFNet-40S | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 28.352 ms | 22 - 55 MB | FP16 | NPU | Use Export Script |
|
54 |
+
| FFNet-40S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 11.794 ms | 1 - 44 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite) |
|
55 |
+
| FFNet-40S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 12.082 ms | 24 - 56 MB | FP16 | NPU | Use Export Script |
|
56 |
+
| FFNet-40S | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 15.466 ms | 32 - 84 MB | FP16 | NPU | [FFNet-40S.onnx](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.onnx) |
|
57 |
+
| FFNet-40S | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 16.542 ms | 24 - 24 MB | FP16 | NPU | Use Export Script |
|
58 |
+
| FFNet-40S | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 30.278 ms | 24 - 24 MB | FP16 | NPU | [FFNet-40S.onnx](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.onnx) |
|
59 |
|
60 |
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
## Installation
|
64 |
|
|
|
114 |
```bash
|
115 |
python -m qai_hub_models.models.ffnet_40s.export
|
116 |
```
|
|
|
117 |
```
|
118 |
+
Profiling Results
|
119 |
+
------------------------------------------------------------
|
120 |
+
FFNet-40S
|
121 |
+
Device : Samsung Galaxy S23 (13)
|
122 |
+
Runtime : TFLITE
|
123 |
+
Estimated inference time (ms) : 17.0
|
124 |
+
Estimated peak memory usage (MB): [2, 5]
|
125 |
+
Total # Ops : 92
|
126 |
+
Compute Unit(s) : NPU (92 ops)
|
127 |
```
|
128 |
|
129 |
|
|
|
222 |
Get more details on FFNet-40S's performance across various devices [here](https://aihub.qualcomm.com/models/ffnet_40s).
|
223 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
224 |
|
225 |
+
|
226 |
## License
|
227 |
+
* The license for the original implementation of FFNet-40S can be found [here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE).
|
228 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
229 |
+
|
230 |
+
|
231 |
|
232 |
## References
|
233 |
* [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236)
|
234 |
* [Source Model Implementation](https://github.com/Qualcomm-AI-research/FFNet)
|
235 |
|
236 |
+
|
237 |
+
|
238 |
## Community
|
239 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
240 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|