qaihm-bot commited on
Commit
e51ed16
·
verified ·
1 Parent(s): 4b20b79

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +237 -0
README.md ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: bsd-3-clause
4
+ pipeline_tag: keypoint-detection
5
+ tags:
6
+ - backbone
7
+ - android
8
+
9
+ ---
10
+
11
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/facemap_3dmm/web-assets/model_demo.png)
12
+
13
+ # Facial-Landmark-Detection: Optimized for Mobile Deployment
14
+ ## Facial landmark predictor with 3DMM
15
+
16
+ Facial landmark is a deep learning model that can predict 68 landmarks from a single image. It can also be used as a backbone in building more complex models for specific use cases.
17
+
18
+ This model is an implementation of Facial-Landmark-Detection found [here]({source_repo}).
19
+ This repository provides scripts to run Facial-Landmark-Detection on Qualcomm® devices.
20
+ More details on model performance across various devices, can be found
21
+ [here](https://aihub.qualcomm.com/models/facemap_3dmm).
22
+
23
+
24
+ ### Model Details
25
+
26
+ - **Model Type:** Pose estimation
27
+ - **Model Stats:**
28
+ - Input resolution: 128x128
29
+ - Number of parameters: 5.424M
30
+ - Model size: 21.256MB
31
+
32
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
33
+ |---|---|---|---|---|---|---|---|---|
34
+ | Facial-Landmark-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.347 ms | 0 - 4 MB | FP16 | NPU | [Facial-Landmark-Detection.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.tflite) |
35
+ | Facial-Landmark-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.364 ms | 0 - 25 MB | FP16 | NPU | [Facial-Landmark-Detection.so](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.so) |
36
+ | Facial-Landmark-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 0.474 ms | 0 - 12 MB | FP16 | NPU | [Facial-Landmark-Detection.onnx](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.onnx) |
37
+ | Facial-Landmark-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.274 ms | 0 - 25 MB | FP16 | NPU | [Facial-Landmark-Detection.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.tflite) |
38
+ | Facial-Landmark-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.306 ms | 0 - 11 MB | FP16 | NPU | [Facial-Landmark-Detection.so](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.so) |
39
+ | Facial-Landmark-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.378 ms | 0 - 26 MB | FP16 | NPU | [Facial-Landmark-Detection.onnx](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.onnx) |
40
+ | Facial-Landmark-Detection | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.352 ms | 0 - 1 MB | FP16 | NPU | [Facial-Landmark-Detection.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.tflite) |
41
+ | Facial-Landmark-Detection | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.351 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
42
+ | Facial-Landmark-Detection | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.348 ms | 0 - 1 MB | FP16 | NPU | [Facial-Landmark-Detection.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.tflite) |
43
+ | Facial-Landmark-Detection | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.359 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
44
+ | Facial-Landmark-Detection | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.344 ms | 0 - 159 MB | FP16 | NPU | [Facial-Landmark-Detection.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.tflite) |
45
+ | Facial-Landmark-Detection | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.351 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
46
+ | Facial-Landmark-Detection | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.342 ms | 0 - 1 MB | FP16 | NPU | [Facial-Landmark-Detection.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.tflite) |
47
+ | Facial-Landmark-Detection | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.351 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
48
+ | Facial-Landmark-Detection | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.45 ms | 0 - 26 MB | FP16 | NPU | [Facial-Landmark-Detection.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.tflite) |
49
+ | Facial-Landmark-Detection | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.476 ms | 0 - 13 MB | FP16 | NPU | Use Export Script |
50
+ | Facial-Landmark-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.266 ms | 0 - 15 MB | FP16 | NPU | [Facial-Landmark-Detection.tflite](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.tflite) |
51
+ | Facial-Landmark-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.299 ms | 0 - 9 MB | FP16 | NPU | Use Export Script |
52
+ | Facial-Landmark-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.369 ms | 0 - 15 MB | FP16 | NPU | [Facial-Landmark-Detection.onnx](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.onnx) |
53
+ | Facial-Landmark-Detection | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.45 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
54
+ | Facial-Landmark-Detection | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.527 ms | 12 - 12 MB | FP16 | NPU | [Facial-Landmark-Detection.onnx](https://huggingface.co/qualcomm/Facial-Landmark-Detection/blob/main/Facial-Landmark-Detection.onnx) |
55
+
56
+
57
+
58
+
59
+ ## Installation
60
+
61
+ This model can be installed as a Python package via pip.
62
+
63
+ ```bash
64
+ pip install qai-hub-models
65
+ ```
66
+
67
+
68
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
69
+
70
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
71
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
72
+
73
+ With this API token, you can configure your client to run models on the cloud
74
+ hosted devices.
75
+ ```bash
76
+ qai-hub configure --api_token API_TOKEN
77
+ ```
78
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
79
+
80
+
81
+
82
+ ## Demo off target
83
+
84
+ The package contains a simple end-to-end demo that downloads pre-trained
85
+ weights and runs this model on a sample input.
86
+
87
+ ```bash
88
+ python -m qai_hub_models.models.facemap_3dmm.demo
89
+ ```
90
+
91
+ The above demo runs a reference implementation of pre-processing, model
92
+ inference, and post processing.
93
+
94
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
95
+ environment, please add the following to your cell (instead of the above).
96
+ ```
97
+ %run -m qai_hub_models.models.facemap_3dmm.demo
98
+ ```
99
+
100
+
101
+ ### Run model on a cloud-hosted device
102
+
103
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
104
+ device. This script does the following:
105
+ * Performance check on-device on a cloud-hosted device
106
+ * Downloads compiled assets that can be deployed on-device for Android.
107
+ * Accuracy check between PyTorch and on-device outputs.
108
+
109
+ ```bash
110
+ python -m qai_hub_models.models.facemap_3dmm.export
111
+ ```
112
+ ```
113
+ Profiling Results
114
+ ------------------------------------------------------------
115
+ Facial-Landmark-Detection
116
+ Device : Samsung Galaxy S23 (13)
117
+ Runtime : TFLITE
118
+ Estimated inference time (ms) : 0.3
119
+ Estimated peak memory usage (MB): [0, 4]
120
+ Total # Ops : 47
121
+ Compute Unit(s) : NPU (47 ops)
122
+ ```
123
+
124
+
125
+ ## How does this work?
126
+
127
+ This [export script](https://aihub.qualcomm.com/models/facemap_3dmm/qai_hub_models/models/Facial-Landmark-Detection/export.py)
128
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
129
+ on-device. Lets go through each step below in detail:
130
+
131
+ Step 1: **Compile model for on-device deployment**
132
+
133
+ To compile a PyTorch model for on-device deployment, we first trace the model
134
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
135
+
136
+ ```python
137
+ import torch
138
+
139
+ import qai_hub as hub
140
+ from qai_hub_models.models.facemap_3dmm import
141
+
142
+ # Load the model
143
+
144
+ # Device
145
+ device = hub.Device("Samsung Galaxy S23")
146
+
147
+
148
+ ```
149
+
150
+
151
+ Step 2: **Performance profiling on cloud-hosted device**
152
+
153
+ After compiling models from step 1. Models can be profiled model on-device using the
154
+ `target_model`. Note that this scripts runs the model on a device automatically
155
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
156
+ provided job URL to view a variety of on-device performance metrics.
157
+ ```python
158
+ profile_job = hub.submit_profile_job(
159
+ model=target_model,
160
+ device=device,
161
+ )
162
+
163
+ ```
164
+
165
+ Step 3: **Verify on-device accuracy**
166
+
167
+ To verify the accuracy of the model on-device, you can run on-device inference
168
+ on sample input data on the same cloud hosted device.
169
+ ```python
170
+ input_data = torch_model.sample_inputs()
171
+ inference_job = hub.submit_inference_job(
172
+ model=target_model,
173
+ device=device,
174
+ inputs=input_data,
175
+ )
176
+ on_device_output = inference_job.download_output_data()
177
+
178
+ ```
179
+ With the output of the model, you can compute like PSNR, relative errors or
180
+ spot check the output with expected output.
181
+
182
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
183
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
184
+
185
+
186
+
187
+ ## Run demo on a cloud-hosted device
188
+
189
+ You can also run the demo on-device.
190
+
191
+ ```bash
192
+ python -m qai_hub_models.models.facemap_3dmm.demo --on-device
193
+ ```
194
+
195
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
196
+ environment, please add the following to your cell (instead of the above).
197
+ ```
198
+ %run -m qai_hub_models.models.facemap_3dmm.demo -- --on-device
199
+ ```
200
+
201
+
202
+ ## Deploying compiled model to Android
203
+
204
+
205
+ The models can be deployed using multiple runtimes:
206
+ - TensorFlow Lite (`.tflite` export): [This
207
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
208
+ guide to deploy the .tflite model in an Android application.
209
+
210
+
211
+ - QNN (`.so` export ): This [sample
212
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
213
+ provides instructions on how to use the `.so` shared library in an Android application.
214
+
215
+
216
+ ## View on Qualcomm® AI Hub
217
+ Get more details on Facial-Landmark-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/facemap_3dmm).
218
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
219
+
220
+
221
+ ## License
222
+ * The license for the original implementation of Facial-Landmark-Detection can be found [here](https://github.com/qcom-ai-hub/ai-hub-models-internal/blob/main/LICENSE).
223
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
224
+
225
+
226
+
227
+ ## References
228
+ * [None](None)
229
+ * [Source Model Implementation](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/facemap_3dmm/model.py)
230
+
231
+
232
+
233
+ ## Community
234
+ * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
235
+ * For questions or feedback please [reach out to us](mailto:[email protected]).
236
+
237
+