File size: 19,576 Bytes
3b1fc6a
 
8fc0b9f
3b1fc6a
 
3f132bc
3b1fc6a
 
 
607e32f
3b1fc6a
 
 
 
d1892a3
3b1fc6a
 
9a72f1a
d1892a3
 
3b1fc6a
 
 
 
 
 
 
8fc0b9f
3b1fc6a
 
3d508b7
3b1fc6a
8fc0b9f
416b07d
3b1fc6a
8fc0b9f
0cf4a58
293afe6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d973dab
293afe6
 
d973dab
293afe6
 
d973dab
293afe6
d973dab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b1fc6a
1523020
 
3b1fc6a
 
 
 
afbc5b4
3b1fc6a
3f132bc
3b1fc6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0378d42
0cf4a58
 
 
8fc0b9f
 
293afe6
42d8328
8fc0b9f
 
0378d42
1523020
 
3b1fc6a
 
1523020
3b1fc6a
 
 
 
 
 
 
 
 
 
 
 
00f9c33
3b1fc6a
 
00f9c33
3b1fc6a
 
afbc5b4
3b1fc6a
00f9c33
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b1fc6a
 
 
 
 
 
 
 
 
 
 
 
1d61441
 
 
9608d55
3b1fc6a
 
 
 
 
 
 
 
 
1d61441
 
 
 
9608d55
3b1fc6a
 
 
 
 
 
607e32f
3b1fc6a
 
1523020
3b1fc6a
 
 
 
 
42d8328
3b1fc6a
 
 
 
 
42d8328
3b1fc6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0cf4a58
3b1fc6a
afbc5b4
9a72f1a
0cf4a58
 
 
3b1fc6a
 
 
9a72f1a
3b1fc6a
0cf4a58
 
3b1fc6a
eb74a21
3b1fc6a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
---
library_name: pytorch
license: other
tags:
- android
pipeline_tag: keypoint-detection

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/hrnet_pose/web-assets/model_demo.png)

# HRNetPose: Optimized for Mobile Deployment
## Perform accurate human pose estimation


HRNet performs pose estimation in high-resolution representations.

This model is an implementation of HRNetPose found [here](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch).


This repository provides scripts to run HRNetPose on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/hrnet_pose).


### Model Details

- **Model Type:** Model_use_case.pose_estimation
- **Model Stats:**
  - Model checkpoint: hrnet_posenet_FP32_state_dict
  - Input resolution: 256x192
  - Number of parameters: 28.5M
  - Model size (float): 109 MB
  - Model size (w8a8): 28.1 MB

| Model | Precision | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| HRNetPose | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 14.327 ms | 0 - 84 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 14.21 ms | 1 - 39 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 3.641 ms | 0 - 120 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 4.823 ms | 0 - 58 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 2.608 ms | 0 - 18 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 2.61 ms | 1 - 14 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 4.347 ms | 0 - 85 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 4.298 ms | 1 - 40 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 14.327 ms | 0 - 84 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 14.21 ms | 1 - 39 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 2.61 ms | 0 - 245 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 2.615 ms | 1 - 12 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 4.547 ms | 0 - 72 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 4.477 ms | 1 - 37 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 2.603 ms | 0 - 129 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 2.625 ms | 1 - 13 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 4.347 ms | 0 - 85 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 4.298 ms | 1 - 40 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 2.605 ms | 0 - 241 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 2.619 ms | 1 - 14 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 2.698 ms | 0 - 126 MB | NPU | [HRNetPose.onnx](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx) |
| HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 1.878 ms | 0 - 128 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 2.051 ms | 0 - 59 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 2.137 ms | 0 - 76 MB | NPU | [HRNetPose.onnx](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx) |
| HRNetPose | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 1.825 ms | 0 - 87 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.tflite) |
| HRNetPose | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 1.86 ms | 1 - 45 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 1.94 ms | 0 - 50 MB | NPU | [HRNetPose.onnx](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx) |
| HRNetPose | float | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 3.173 ms | 104 - 104 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.dlc) |
| HRNetPose | float | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 2.656 ms | 56 - 56 MB | NPU | [HRNetPose.onnx](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose.onnx) |
| HRNetPose | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | TFLITE | 2.605 ms | 0 - 51 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | QCS8275 (Proxy) | Qualcomm® QCS8275 (Proxy) | QNN_DLC | 2.851 ms | 0 - 49 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | TFLITE | 1.235 ms | 0 - 93 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | QCS8450 (Proxy) | Qualcomm® QCS8450 (Proxy) | QNN_DLC | 1.73 ms | 0 - 85 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | TFLITE | 0.973 ms | 0 - 161 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | QCS8550 (Proxy) | Qualcomm® QCS8550 (Proxy) | QNN_DLC | 1.171 ms | 0 - 65 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | TFLITE | 1.319 ms | 0 - 52 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | QCS9075 (Proxy) | Qualcomm® QCS9075 (Proxy) | QNN_DLC | 1.436 ms | 0 - 49 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | TFLITE | 3.873 ms | 0 - 77 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | RB3 Gen 2 (Proxy) | Qualcomm® QCS6490 (Proxy) | QNN_DLC | 5.294 ms | 0 - 73 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | RB5 (Proxy) | Qualcomm® QCS8250 (Proxy) | TFLITE | 17.426 ms | 0 - 3 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | SA7255P ADP | Qualcomm® SA7255P | TFLITE | 2.605 ms | 0 - 51 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | SA7255P ADP | Qualcomm® SA7255P | QNN_DLC | 2.851 ms | 0 - 49 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | TFLITE | 0.961 ms | 0 - 159 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | SA8255 (Proxy) | Qualcomm® SA8255P (Proxy) | QNN_DLC | 1.172 ms | 0 - 56 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | SA8295P ADP | Qualcomm® SA8295P | TFLITE | 1.684 ms | 0 - 52 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | SA8295P ADP | Qualcomm® SA8295P | QNN_DLC | 1.858 ms | 0 - 53 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | TFLITE | 0.977 ms | 0 - 160 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | SA8650 (Proxy) | Qualcomm® SA8650P (Proxy) | QNN_DLC | 1.172 ms | 0 - 37 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | SA8775P ADP | Qualcomm® SA8775P | TFLITE | 1.319 ms | 0 - 52 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | SA8775P ADP | Qualcomm® SA8775P | QNN_DLC | 1.436 ms | 0 - 49 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | TFLITE | 0.962 ms | 0 - 161 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | QNN_DLC | 1.143 ms | 0 - 46 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 Mobile | ONNX | 4.841 ms | 0 - 107 MB | NPU | [HRNetPose.onnx](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.onnx) |
| HRNetPose | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | TFLITE | 0.725 ms | 0 - 92 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | QNN_DLC | 0.829 ms | 0 - 80 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 Mobile | ONNX | 3.503 ms | 48 - 229 MB | NPU | [HRNetPose.onnx](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.onnx) |
| HRNetPose | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | TFLITE | 0.645 ms | 0 - 52 MB | NPU | [HRNetPose.tflite](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.tflite) |
| HRNetPose | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | QNN_DLC | 0.741 ms | 0 - 55 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite Mobile | ONNX | 3.888 ms | 1 - 187 MB | NPU | [HRNetPose.onnx](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.onnx) |
| HRNetPose | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN_DLC | 1.269 ms | 130 - 130 MB | NPU | [HRNetPose.dlc](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.dlc) |
| HRNetPose | w8a8 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 5.672 ms | 27 - 27 MB | NPU | [HRNetPose.onnx](https://huggingface.co/qualcomm/HRNetPose/blob/main/HRNetPose_w8a8.onnx) |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[hrnet-pose]" torch==2.4.1 -f https://download.openmmlab.com/mmcv/dist/cpu/torch2.4/index.html -f https://qaihub-public-python-wheels.s3.us-west-2.amazonaws.com/index.html
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.hrnet_pose.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.hrnet_pose.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.hrnet_pose.export
```
```
Profiling Results
------------------------------------------------------------
HRNetPose
Device                          : cs_8275 (ANDROID 14)                 
Runtime                         : TFLITE                               
Estimated inference time (ms)   : 14.3                                 
Estimated peak memory usage (MB): [0, 84]                              
Total # Ops                     : 516                                  
Compute Unit(s)                 : npu (516 ops) gpu (0 ops) cpu (0 ops)
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/hrnet_pose/qai_hub_models/models/HRNetPose/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.hrnet_pose import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S24")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        
```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).



## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.hrnet_pose.demo --eval-mode on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.hrnet_pose.demo -- --eval-mode on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on HRNetPose's performance across various devices [here](https://aihub.qualcomm.com/models/hrnet_pose).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of HRNetPose can be found
  [here](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1902.09212)
* [Source Model Implementation](https://github.com/leoxiaobin/deep-high-resolution-net.pytorch)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).