qaihm-bot commited on
Commit
69346c8
·
verified ·
1 Parent(s): 74c1b35

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +7 -6
README.md CHANGED
@@ -17,7 +17,7 @@ tags:
17
  # Inception-v3-Quantized: Optimized for Mobile Deployment
18
  ## Quantized Imagenet classifier and general purpose backbone
19
 
20
- InceptionNetV3 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases. This model is post-training quantized to int8 using samples from [Google's open images dataset](https://storage.googleapis.com/openimages/web/index.html).
21
 
22
  This model is an implementation of Inception-v3-Quantized found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/inception.py).
23
  This repository provides scripts to run Inception-v3-Quantized on Qualcomm® devices.
@@ -37,7 +37,8 @@ More details on model performance across various devices, can be found
37
 
38
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
  | ---|---|---|---|---|---|---|---|
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.623 ms | 0 - 2 MB | INT8 | NPU | [Inception-v3-Quantized.tflite](https://huggingface.co/qualcomm/Inception-v3-Quantized/blob/main/Inception-v3-Quantized.tflite)
 
41
 
42
 
43
  ## Installation
@@ -97,10 +98,10 @@ python -m qai_hub_models.models.inception_v3_quantized.export
97
  ```
98
  Profile Job summary of Inception-v3-Quantized
99
  --------------------------------------------------
100
- Device: QCS8550 (Proxy) (12)
101
- Estimated Inference Time: 0.64 ms
102
- Estimated Peak Memory Range: 0.01-1.83 MB
103
- Compute Units: NPU (146) | Total (146)
104
 
105
 
106
  ```
 
17
  # Inception-v3-Quantized: Optimized for Mobile Deployment
18
  ## Quantized Imagenet classifier and general purpose backbone
19
 
20
+ InceptionNetV3 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases. This model is post-training quantized to int8 using samples from Google's open images dataset.
21
 
22
  This model is an implementation of Inception-v3-Quantized found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/inception.py).
23
  This repository provides scripts to run Inception-v3-Quantized on Qualcomm® devices.
 
37
 
38
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
  | ---|---|---|---|---|---|---|---|
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.615 ms | 0 - 2 MB | INT8 | NPU | [Inception-v3-Quantized.tflite](https://huggingface.co/qualcomm/Inception-v3-Quantized/blob/main/Inception-v3-Quantized.tflite)
41
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.656 ms | 0 - 67 MB | INT8 | NPU | [Inception-v3-Quantized.so](https://huggingface.co/qualcomm/Inception-v3-Quantized/blob/main/Inception-v3-Quantized.so)
42
 
43
 
44
  ## Installation
 
98
  ```
99
  Profile Job summary of Inception-v3-Quantized
100
  --------------------------------------------------
101
+ Device: Snapdragon X Elite CRD (11)
102
+ Estimated Inference Time: 0.72 ms
103
+ Estimated Peak Memory Range: 0.39-0.39 MB
104
+ Compute Units: NPU (134) | Total (134)
105
 
106
 
107
  ```