Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -29,9 +29,12 @@ More details on model performance across various devices, can be found
|
|
29 |
- Model size: 4.56 MB
|
30 |
|
31 |
|
|
|
|
|
32 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
33 |
| ---|---|---|---|---|---|---|---|
|
34 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 11.
|
|
|
35 |
|
36 |
|
37 |
## Installation
|
@@ -89,9 +92,21 @@ device. This script does the following:
|
|
89 |
python -m qai_hub_models.models.litehrnet.export
|
90 |
```
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
## How does this work?
|
93 |
|
94 |
-
This [export script](https://
|
95 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
96 |
on-device. Lets go through each step below in detail:
|
97 |
|
@@ -168,6 +183,7 @@ spot check the output with expected output.
|
|
168 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
169 |
|
170 |
|
|
|
171 |
## Run demo on a cloud-hosted device
|
172 |
|
173 |
You can also run the demo on-device.
|
@@ -204,7 +220,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
204 |
## License
|
205 |
- The license for the original implementation of LiteHRNet can be found
|
206 |
[here](https://github.com/HRNet/Lite-HRNet/blob/hrnet/LICENSE).
|
207 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
208 |
|
209 |
## References
|
210 |
* [Lite-HRNet: A Lightweight High-Resolution Network](https://arxiv.org/abs/2104.06403)
|
|
|
29 |
- Model size: 4.56 MB
|
30 |
|
31 |
|
32 |
+
|
33 |
+
|
34 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
| ---|---|---|---|---|---|---|---|
|
36 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 11.261 ms | 6 - 13 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite)
|
37 |
+
|
38 |
|
39 |
|
40 |
## Installation
|
|
|
92 |
python -m qai_hub_models.models.litehrnet.export
|
93 |
```
|
94 |
|
95 |
+
```
|
96 |
+
Profile Job summary of LiteHRNet
|
97 |
+
--------------------------------------------------
|
98 |
+
Device: QCS8550 (Proxy) (12)
|
99 |
+
Estimated Inference Time: 11.18 ms
|
100 |
+
Estimated Peak Memory Range: 6.26-17.18 MB
|
101 |
+
Compute Units: NPU (1226),CPU (10) | Total (1236)
|
102 |
+
|
103 |
+
|
104 |
+
```
|
105 |
+
|
106 |
+
|
107 |
## How does this work?
|
108 |
|
109 |
+
This [export script](https://aihub.qualcomm.com/models/litehrnet/qai_hub_models/models/LiteHRNet/export.py)
|
110 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
111 |
on-device. Lets go through each step below in detail:
|
112 |
|
|
|
183 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
184 |
|
185 |
|
186 |
+
|
187 |
## Run demo on a cloud-hosted device
|
188 |
|
189 |
You can also run the demo on-device.
|
|
|
220 |
## License
|
221 |
- The license for the original implementation of LiteHRNet can be found
|
222 |
[here](https://github.com/HRNet/Lite-HRNet/blob/hrnet/LICENSE).
|
223 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
224 |
|
225 |
## References
|
226 |
* [Lite-HRNet: A Lightweight High-Resolution Network](https://arxiv.org/abs/2104.06403)
|