shreyajn commited on
Commit
4bbd99d
1 Parent(s): 9afbfba

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +14 -31
README.md CHANGED
@@ -33,7 +33,7 @@ More details on model performance across various devices, can be found
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 11.204 ms | 6 - 10 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite)
37
 
38
 
39
 
@@ -95,9 +95,9 @@ python -m qai_hub_models.models.litehrnet.export
95
  ```
96
  Profile Job summary of LiteHRNet
97
  --------------------------------------------------
98
- Device: QCS8550 (Proxy) (12)
99
- Estimated Inference Time: 11.50 ms
100
- Estimated Peak Memory Range: 6.26-28.28 MB
101
  Compute Units: NPU (1225),CPU (10) | Total (1235)
102
 
103
 
@@ -119,29 +119,13 @@ in memory using the `jit.trace` and then call the `submit_compile_job` API.
119
  import torch
120
 
121
  import qai_hub as hub
122
- from qai_hub_models.models.litehrnet import Model
123
 
124
  # Load the model
125
- torch_model = Model.from_pretrained()
126
 
127
  # Device
128
  device = hub.Device("Samsung Galaxy S23")
129
 
130
- # Trace model
131
- input_shape = torch_model.get_input_spec()
132
- sample_inputs = torch_model.sample_inputs()
133
-
134
- pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
135
-
136
- # Compile model on a specific device
137
- compile_job = hub.submit_compile_job(
138
- model=pt_model,
139
- device=device,
140
- input_specs=torch_model.get_input_spec(),
141
- )
142
-
143
- # Get target model to run on-device
144
- target_model = compile_job.get_target_model()
145
 
146
  ```
147
 
@@ -154,10 +138,10 @@ provisioned in the cloud. Once the job is submitted, you can navigate to a
154
  provided job URL to view a variety of on-device performance metrics.
155
  ```python
156
  profile_job = hub.submit_profile_job(
157
- model=target_model,
158
- device=device,
159
- )
160
-
161
  ```
162
 
163
  Step 3: **Verify on-device accuracy**
@@ -167,12 +151,11 @@ on sample input data on the same cloud hosted device.
167
  ```python
168
  input_data = torch_model.sample_inputs()
169
  inference_job = hub.submit_inference_job(
170
- model=target_model,
171
- device=device,
172
- inputs=input_data,
173
- )
174
-
175
- on_device_output = inference_job.download_output_data()
176
 
177
  ```
178
  With the output of the model, you can compute like PSNR, relative errors or
 
33
 
34
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
35
  | ---|---|---|---|---|---|---|---|
36
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 11.098 ms | 6 - 189 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite)
37
 
38
 
39
 
 
95
  ```
96
  Profile Job summary of LiteHRNet
97
  --------------------------------------------------
98
+ Device: SA8255 (Proxy) (13)
99
+ Estimated Inference Time: 11.21 ms
100
+ Estimated Peak Memory Range: 6.23-8.89 MB
101
  Compute Units: NPU (1225),CPU (10) | Total (1235)
102
 
103
 
 
119
  import torch
120
 
121
  import qai_hub as hub
122
+ from qai_hub_models.models.litehrnet import
123
 
124
  # Load the model
 
125
 
126
  # Device
127
  device = hub.Device("Samsung Galaxy S23")
128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
  ```
131
 
 
138
  provided job URL to view a variety of on-device performance metrics.
139
  ```python
140
  profile_job = hub.submit_profile_job(
141
+ model=target_model,
142
+ device=device,
143
+ )
144
+
145
  ```
146
 
147
  Step 3: **Verify on-device accuracy**
 
151
  ```python
152
  input_data = torch_model.sample_inputs()
153
  inference_job = hub.submit_inference_job(
154
+ model=target_model,
155
+ device=device,
156
+ inputs=input_data,
157
+ )
158
+ on_device_output = inference_job.download_output_data()
 
159
 
160
  ```
161
  With the output of the model, you can compute like PSNR, relative errors or