Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -14,7 +14,7 @@ tags:
|
|
14 |
|
15 |
LiteHRNet is a machine learning model that detects human pose and returns a location and confidence for each of 17 joints.
|
16 |
|
17 |
-
This model is an implementation of LiteHRNet found [here](
|
18 |
This repository provides scripts to run LiteHRNet on Qualcomm® devices.
|
19 |
More details on model performance across various devices, can be found
|
20 |
[here](https://aihub.qualcomm.com/models/litehrnet).
|
@@ -28,14 +28,23 @@ More details on model performance across various devices, can be found
|
|
28 |
- Number of parameters: 1.11M
|
29 |
- Model size: 4.56 MB
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
|
33 |
|
34 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
-
| ---|---|---|---|---|---|---|---|
|
36 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 7.904 ms | 0 - 4 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite)
|
37 |
-
|
38 |
-
|
39 |
|
40 |
## Installation
|
41 |
|
@@ -91,16 +100,16 @@ device. This script does the following:
|
|
91 |
```bash
|
92 |
python -m qai_hub_models.models.litehrnet.export
|
93 |
```
|
94 |
-
|
95 |
```
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
104 |
```
|
105 |
|
106 |
|
@@ -199,15 +208,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
199 |
Get more details on LiteHRNet's performance across various devices [here](https://aihub.qualcomm.com/models/litehrnet).
|
200 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
201 |
|
|
|
202 |
## License
|
203 |
-
|
204 |
-
|
205 |
-
|
|
|
206 |
|
207 |
## References
|
208 |
* [Lite-HRNet: A Lightweight High-Resolution Network](https://arxiv.org/abs/2104.06403)
|
209 |
* [Source Model Implementation](https://github.com/HRNet/Lite-HRNet)
|
210 |
|
|
|
|
|
211 |
## Community
|
212 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
213 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
14 |
|
15 |
LiteHRNet is a machine learning model that detects human pose and returns a location and confidence for each of 17 joints.
|
16 |
|
17 |
+
This model is an implementation of LiteHRNet found [here]({source_repo}).
|
18 |
This repository provides scripts to run LiteHRNet on Qualcomm® devices.
|
19 |
More details on model performance across various devices, can be found
|
20 |
[here](https://aihub.qualcomm.com/models/litehrnet).
|
|
|
28 |
- Number of parameters: 1.11M
|
29 |
- Model size: 4.56 MB
|
30 |
|
31 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
32 |
+
|---|---|---|---|---|---|---|---|---|
|
33 |
+
| LiteHRNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 7.959 ms | 0 - 3 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
34 |
+
| LiteHRNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.13 ms | 0 - 7 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
35 |
+
| LiteHRNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.91 ms | 0 - 95 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
36 |
+
| LiteHRNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.533 ms | 1 - 107 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
37 |
+
| LiteHRNet | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 7.938 ms | 0 - 2 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
38 |
+
| LiteHRNet | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 7.965 ms | 0 - 3 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
39 |
+
| LiteHRNet | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 7.929 ms | 0 - 2 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
40 |
+
| LiteHRNet | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 7.934 ms | 0 - 3 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
41 |
+
| LiteHRNet | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 8.522 ms | 0 - 84 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
42 |
+
| LiteHRNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 5.295 ms | 0 - 68 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
43 |
+
| LiteHRNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.83 ms | 1 - 80 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
44 |
+
| LiteHRNet | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.063 ms | 4 - 4 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
45 |
|
46 |
|
47 |
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
## Installation
|
50 |
|
|
|
100 |
```bash
|
101 |
python -m qai_hub_models.models.litehrnet.export
|
102 |
```
|
|
|
103 |
```
|
104 |
+
Profiling Results
|
105 |
+
------------------------------------------------------------
|
106 |
+
LiteHRNet
|
107 |
+
Device : Samsung Galaxy S23 (13)
|
108 |
+
Runtime : TFLITE
|
109 |
+
Estimated inference time (ms) : 8.0
|
110 |
+
Estimated peak memory usage (MB): [0, 3]
|
111 |
+
Total # Ops : 1235
|
112 |
+
Compute Unit(s) : NPU (1233 ops) CPU (2 ops)
|
113 |
```
|
114 |
|
115 |
|
|
|
208 |
Get more details on LiteHRNet's performance across various devices [here](https://aihub.qualcomm.com/models/litehrnet).
|
209 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
210 |
|
211 |
+
|
212 |
## License
|
213 |
+
* The license for the original implementation of LiteHRNet can be found [here](https://github.com/HRNet/Lite-HRNet/blob/hrnet/LICENSE).
|
214 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
215 |
+
|
216 |
+
|
217 |
|
218 |
## References
|
219 |
* [Lite-HRNet: A Lightweight High-Resolution Network](https://arxiv.org/abs/2104.06403)
|
220 |
* [Source Model Implementation](https://github.com/HRNet/Lite-HRNet)
|
221 |
|
222 |
+
|
223 |
+
|
224 |
## Community
|
225 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
226 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|