Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -33,19 +33,20 @@ More details on model performance across various devices, can be found
|
|
33 |
|
34 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
|---|---|---|---|---|---|---|---|---|
|
36 |
-
| LiteHRNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 7.
|
37 |
-
| LiteHRNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.
|
38 |
-
| LiteHRNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.
|
39 |
-
| LiteHRNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.
|
40 |
-
| LiteHRNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE |
|
41 |
-
| LiteHRNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.
|
42 |
-
| LiteHRNet | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 7.
|
43 |
-
| LiteHRNet |
|
44 |
-
| LiteHRNet |
|
45 |
-
| LiteHRNet |
|
46 |
-
| LiteHRNet |
|
47 |
-
| LiteHRNet |
|
48 |
-
| LiteHRNet |
|
|
|
49 |
|
50 |
|
51 |
|
@@ -110,8 +111,8 @@ Profiling Results
|
|
110 |
LiteHRNet
|
111 |
Device : Samsung Galaxy S23 (13)
|
112 |
Runtime : TFLITE
|
113 |
-
Estimated inference time (ms) :
|
114 |
-
Estimated peak memory usage (MB): [0,
|
115 |
Total # Ops : 1235
|
116 |
Compute Unit(s) : NPU (1233 ops) CPU (2 ops)
|
117 |
```
|
@@ -132,13 +133,29 @@ in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
|
132 |
import torch
|
133 |
|
134 |
import qai_hub as hub
|
135 |
-
from qai_hub_models.models.litehrnet import
|
136 |
|
137 |
# Load the model
|
|
|
138 |
|
139 |
# Device
|
140 |
device = hub.Device("Samsung Galaxy S23")
|
141 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
```
|
144 |
|
|
|
33 |
|
34 |
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
|---|---|---|---|---|---|---|---|---|
|
36 |
+
| LiteHRNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 7.877 ms | 0 - 15 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
37 |
+
| LiteHRNet | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 7.308 ms | 0 - 6 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
38 |
+
| LiteHRNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.774 ms | 0 - 38 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
39 |
+
| LiteHRNet | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 4.737 ms | 1 - 111 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
40 |
+
| LiteHRNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 4.296 ms | 0 - 31 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
41 |
+
| LiteHRNet | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 4.942 ms | 1 - 79 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
42 |
+
| LiteHRNet | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 7.832 ms | 0 - 18 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
43 |
+
| LiteHRNet | SA7255P ADP | SA7255P | TFLITE | 28.622 ms | 0 - 30 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
44 |
+
| LiteHRNet | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 7.875 ms | 0 - 15 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
45 |
+
| LiteHRNet | SA8295P ADP | SA8295P | TFLITE | 9.858 ms | 0 - 26 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
46 |
+
| LiteHRNet | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 7.892 ms | 0 - 14 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
47 |
+
| LiteHRNet | SA8775P ADP | SA8775P | TFLITE | 10.712 ms | 0 - 30 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
48 |
+
| LiteHRNet | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 8.527 ms | 0 - 32 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite) |
|
49 |
+
| LiteHRNet | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 8.163 ms | 4 - 4 MB | FP16 | NPU | [LiteHRNet.onnx](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.onnx) |
|
50 |
|
51 |
|
52 |
|
|
|
111 |
LiteHRNet
|
112 |
Device : Samsung Galaxy S23 (13)
|
113 |
Runtime : TFLITE
|
114 |
+
Estimated inference time (ms) : 7.9
|
115 |
+
Estimated peak memory usage (MB): [0, 15]
|
116 |
Total # Ops : 1235
|
117 |
Compute Unit(s) : NPU (1233 ops) CPU (2 ops)
|
118 |
```
|
|
|
133 |
import torch
|
134 |
|
135 |
import qai_hub as hub
|
136 |
+
from qai_hub_models.models.litehrnet import Model
|
137 |
|
138 |
# Load the model
|
139 |
+
torch_model = Model.from_pretrained()
|
140 |
|
141 |
# Device
|
142 |
device = hub.Device("Samsung Galaxy S23")
|
143 |
|
144 |
+
# Trace model
|
145 |
+
input_shape = torch_model.get_input_spec()
|
146 |
+
sample_inputs = torch_model.sample_inputs()
|
147 |
+
|
148 |
+
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
149 |
+
|
150 |
+
# Compile model on a specific device
|
151 |
+
compile_job = hub.submit_compile_job(
|
152 |
+
model=pt_model,
|
153 |
+
device=device,
|
154 |
+
input_specs=torch_model.get_input_spec(),
|
155 |
+
)
|
156 |
+
|
157 |
+
# Get target model to run on-device
|
158 |
+
target_model = compile_job.get_target_model()
|
159 |
|
160 |
```
|
161 |
|