qaihm-bot commited on
Commit
c820c94
1 Parent(s): 4f10f12

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -31,7 +31,7 @@ More details on model performance across various devices, can be found
31
 
32
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
33
  | ---|---|---|---|---|---|---|---|
34
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 15.966 ms | 6 - 13 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite)
35
 
36
 
37
  ## Installation
@@ -92,9 +92,9 @@ python -m qai_hub_models.models.litehrnet.export
92
  ```
93
  Profile Job summary of LiteHRNet
94
  --------------------------------------------------
95
- Device: Samsung Galaxy S23 Ultra (13)
96
- Estimated Inference Time: 15.97 ms
97
- Estimated Peak Memory Range: 6.26-12.88 MB
98
  Compute Units: NPU (1226),CPU (10) | Total (1236)
99
 
100
 
@@ -214,7 +214,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
214
  ## License
215
  - The license for the original implementation of LiteHRNet can be found
216
  [here](https://github.com/HRNet/Lite-HRNet/blob/hrnet/LICENSE).
217
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
218
 
219
  ## References
220
  * [Lite-HRNet: A Lightweight High-Resolution Network](https://arxiv.org/abs/2104.06403)
 
31
 
32
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
33
  | ---|---|---|---|---|---|---|---|
34
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 15.866 ms | 6 - 10 MB | FP16 | NPU | [LiteHRNet.tflite](https://huggingface.co/qualcomm/LiteHRNet/blob/main/LiteHRNet.tflite)
35
 
36
 
37
  ## Installation
 
92
  ```
93
  Profile Job summary of LiteHRNet
94
  --------------------------------------------------
95
+ Device: Samsung Galaxy S24 (14)
96
+ Estimated Inference Time: 10.70 ms
97
+ Estimated Peak Memory Range: 0.02-68.35 MB
98
  Compute Units: NPU (1226),CPU (10) | Total (1236)
99
 
100
 
 
214
  ## License
215
  - The license for the original implementation of LiteHRNet can be found
216
  [here](https://github.com/HRNet/Lite-HRNet/blob/hrnet/LICENSE).
217
+ - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
218
 
219
  ## References
220
  * [Lite-HRNet: A Lightweight High-Resolution Network](https://arxiv.org/abs/2104.06403)