File size: 14,801 Bytes
386c216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05bfe4b
386c216
 
ac7ad9a
05bfe4b
 
386c216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf98cbf
 
07ea7eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
648e73e
07ea7eb
 
 
 
 
 
 
 
 
 
 
 
386c216
 
 
 
 
 
 
 
 
648e73e
386c216
 
 
648e73e
386c216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf98cbf
 
 
 
 
 
07ea7eb
cf98cbf
 
 
 
 
 
 
 
07ea7eb
cf98cbf
 
386c216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf98cbf
386c216
cf98cbf
 
 
 
386c216
 
 
 
 
cf98cbf
 
386c216
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
---
library_name: pytorch
license: apache-2.0
pipeline_tag: object-detection
tags:
- real_time
- quantized
- android

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/mediapipe_face_quantized/web-assets/model_demo.png)

# MediaPipe-Face-Detection-Quantized: Optimized for Mobile Deployment
## Detect faces and locate facial features in real-time video and image streams


Designed for sub-millisecond processing, this model predicts bounding boxes and pose skeletons (left eye, right eye, nose tip, mouth, left eye tragion, and right eye tragion) of faces in an image.

This model is an implementation of MediaPipe-Face-Detection-Quantized found [here](https://github.com/zmurez/MediaPipePyTorch/).


This repository provides scripts to run MediaPipe-Face-Detection-Quantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/mediapipe_face_quantized).


### Model Details

- **Model Type:** Object detection
- **Model Stats:**
  - Input resolution: 256x256
  - Number of output classes: 6
  - Number of parameters (MediaPipeFaceDetector): 135K
  - Model size (MediaPipeFaceDetector): 255 KB
  - Number of parameters (MediaPipeFaceLandmarkDetector): 603K
  - Model size (MediaPipeFaceLandmarkDetector): 746 KB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| MediaPipeFaceDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.276 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceDetector.tflite) |
| MediaPipeFaceDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.302 ms | 0 - 11 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.so](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceDetector.so) |
| MediaPipeFaceDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.181 ms | 0 - 32 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceDetector.tflite) |
| MediaPipeFaceDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.203 ms | 0 - 19 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.so](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceDetector.so) |
| MediaPipeFaceDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.199 ms | 0 - 23 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceDetector.tflite) |
| MediaPipeFaceDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.218 ms | 0 - 14 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceDetector | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 0.681 ms | 0 - 24 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceDetector.tflite) |
| MediaPipeFaceDetector | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 0.775 ms | 0 - 8 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceDetector | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 4.967 ms | 0 - 5 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceDetector.tflite) |
| MediaPipeFaceDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.269 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceDetector.tflite) |
| MediaPipeFaceDetector | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.301 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.273 ms | 0 - 2 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceDetector.tflite) |
| MediaPipeFaceDetector | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.303 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceDetector | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.275 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceDetector.tflite) |
| MediaPipeFaceDetector | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.306 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.279 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceDetector.tflite) |
| MediaPipeFaceDetector | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.302 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceDetector | SA8295P ADP | SA8295P | TFLITE | 0.648 ms | 0 - 22 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceDetector.tflite) |
| MediaPipeFaceDetector | SA8295P ADP | SA8295P | QNN | 0.771 ms | 0 - 6 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.335 ms | 0 - 34 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceDetector.tflite) |
| MediaPipeFaceDetector | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.358 ms | 0 - 19 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.424 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceLandmarkDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.186 ms | 0 - 33 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceLandmarkDetector.tflite) |
| MediaPipeFaceLandmarkDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.224 ms | 0 - 4 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.so](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceLandmarkDetector.so) |
| MediaPipeFaceLandmarkDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.129 ms | 0 - 27 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceLandmarkDetector.tflite) |
| MediaPipeFaceLandmarkDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.162 ms | 0 - 14 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.so](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceLandmarkDetector.so) |
| MediaPipeFaceLandmarkDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.118 ms | 0 - 18 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceLandmarkDetector.tflite) |
| MediaPipeFaceLandmarkDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.143 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceLandmarkDetector | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 0.398 ms | 0 - 19 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceLandmarkDetector.tflite) |
| MediaPipeFaceLandmarkDetector | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 0.502 ms | 0 - 8 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceLandmarkDetector | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 2.958 ms | 0 - 6 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceLandmarkDetector.tflite) |
| MediaPipeFaceLandmarkDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.18 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceLandmarkDetector.tflite) |
| MediaPipeFaceLandmarkDetector | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.218 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceLandmarkDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.184 ms | 0 - 3 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceLandmarkDetector.tflite) |
| MediaPipeFaceLandmarkDetector | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.215 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceLandmarkDetector | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.176 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceLandmarkDetector.tflite) |
| MediaPipeFaceLandmarkDetector | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.222 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceLandmarkDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.183 ms | 0 - 68 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceLandmarkDetector.tflite) |
| MediaPipeFaceLandmarkDetector | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.22 ms | 0 - 1 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceLandmarkDetector | SA8295P ADP | SA8295P | TFLITE | 0.479 ms | 0 - 17 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceLandmarkDetector.tflite) |
| MediaPipeFaceLandmarkDetector | SA8295P ADP | SA8295P | QNN | 0.624 ms | 0 - 6 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceLandmarkDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.217 ms | 0 - 28 MB | FP16 | NPU | [MediaPipe-Face-Detection-Quantized.tflite](https://huggingface.co/qualcomm/MediaPipe-Face-Detection-Quantized/blob/main/MediaPipeFaceLandmarkDetector.tflite) |
| MediaPipeFaceLandmarkDetector | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.255 ms | 0 - 15 MB | FP16 | NPU | Use Export Script |
| MediaPipeFaceLandmarkDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.318 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |




## Installation

This model can be installed as a Python package via pip.

```bash
pip install "qai-hub-models[mediapipe_face_quantized]"
```



## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.mediapipe_face_quantized.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.mediapipe_face_quantized.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.mediapipe_face_quantized.export
```
```
Profiling Results
------------------------------------------------------------
MediaPipeFaceDetector
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 0.3                    
Estimated peak memory usage (MB): [0, 1]                 
Total # Ops                     : 121                    
Compute Unit(s)                 : NPU (121 ops)          

------------------------------------------------------------
MediaPipeFaceLandmarkDetector
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 0.2                    
Estimated peak memory usage (MB): [0, 33]                
Total # Ops                     : 117                    
Compute Unit(s)                 : NPU (117 ops)          
```





## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on MediaPipe-Face-Detection-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/mediapipe_face_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of MediaPipe-Face-Detection-Quantized can be found [here](https://github.com/zmurez/MediaPipePyTorch/blob/master/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [BlazeFace: Sub-millisecond Neural Face Detection on Mobile GPUs](https://arxiv.org/abs/1907.05047)
* [Source Model Implementation](https://github.com/zmurez/MediaPipePyTorch/)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).