Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -15,7 +15,7 @@ tags:
|
|
15 |
|
16 |
The MediaPipe Hand Landmark Detector is a machine learning pipeline that predicts bounding boxes and pose skeletons of hands in an image.
|
17 |
|
18 |
-
This model is an implementation of MediaPipe-Hand-Detection found [here](
|
19 |
This repository provides scripts to run MediaPipe-Hand-Detection on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/mediapipe_hand).
|
@@ -31,17 +31,35 @@ More details on model performance across various devices, can be found
|
|
31 |
- Number of parameters (MediaPipeHandLandmarkDetector): 2.01M
|
32 |
- Model size (MediaPipeHandLandmarkDetector): 7.71 MB
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
|
37 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
38 |
-
| ---|---|---|---|---|---|---|---|
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.714 ms | 0 - 5 MB | FP16 | NPU | [MediaPipeHandDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite)
|
40 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.048 ms | 0 - 55 MB | FP16 | NPU | [MediaPipeHandLandmarkDetector.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite)
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.791 ms | 1 - 20 MB | FP16 | NPU | [MediaPipeHandDetector.so](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.so)
|
42 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.109 ms | 2 - 39 MB | FP16 | NPU | [MediaPipeHandLandmarkDetector.so](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.so)
|
43 |
-
|
44 |
-
|
45 |
|
46 |
## Installation
|
47 |
|
@@ -96,23 +114,25 @@ device. This script does the following:
|
|
96 |
```bash
|
97 |
python -m qai_hub_models.models.mediapipe_hand.export
|
98 |
```
|
99 |
-
|
100 |
```
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
|
|
116 |
```
|
117 |
|
118 |
|
@@ -240,15 +260,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
240 |
Get more details on MediaPipe-Hand-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/mediapipe_hand).
|
241 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
242 |
|
|
|
243 |
## License
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
247 |
|
248 |
## References
|
249 |
* [MediaPipe Hands: On-device Real-time Hand Tracking](https://arxiv.org/abs/2006.10214)
|
250 |
* [Source Model Implementation](https://github.com/zmurez/MediaPipePyTorch/)
|
251 |
|
|
|
|
|
252 |
## Community
|
253 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
254 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
15 |
|
16 |
The MediaPipe Hand Landmark Detector is a machine learning pipeline that predicts bounding boxes and pose skeletons of hands in an image.
|
17 |
|
18 |
+
This model is an implementation of MediaPipe-Hand-Detection found [here]({source_repo}).
|
19 |
This repository provides scripts to run MediaPipe-Hand-Detection on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/mediapipe_hand).
|
|
|
31 |
- Number of parameters (MediaPipeHandLandmarkDetector): 2.01M
|
32 |
- Model size (MediaPipeHandLandmarkDetector): 7.71 MB
|
33 |
|
34 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
+
|---|---|---|---|---|---|---|---|---|
|
36 |
+
| MediaPipeHandDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.704 ms | 0 - 4 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
|
37 |
+
| MediaPipeHandDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.16 ms | 0 - 17 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.onnx) |
|
38 |
+
| MediaPipeHandDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.612 ms | 0 - 59 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
|
39 |
+
| MediaPipeHandDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.903 ms | 0 - 67 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.onnx) |
|
40 |
+
| MediaPipeHandDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.706 ms | 0 - 113 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
|
41 |
+
| MediaPipeHandDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.711 ms | 0 - 61 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
|
42 |
+
| MediaPipeHandDetector | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.706 ms | 0 - 3 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
|
43 |
+
| MediaPipeHandDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.708 ms | 0 - 3 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
|
44 |
+
| MediaPipeHandDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.321 ms | 0 - 52 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
|
45 |
+
| MediaPipeHandDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.529 ms | 0 - 28 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.tflite) |
|
46 |
+
| MediaPipeHandDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.878 ms | 0 - 32 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.onnx) |
|
47 |
+
| MediaPipeHandDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.204 ms | 6 - 6 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandDetector.onnx) |
|
48 |
+
| MediaPipeHandLandmarkDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.03 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
|
49 |
+
| MediaPipeHandLandmarkDetector | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.552 ms | 0 - 8 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.onnx) |
|
50 |
+
| MediaPipeHandLandmarkDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.848 ms | 0 - 62 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
|
51 |
+
| MediaPipeHandLandmarkDetector | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 1.213 ms | 0 - 65 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.onnx) |
|
52 |
+
| MediaPipeHandLandmarkDetector | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.003 ms | 0 - 171 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
|
53 |
+
| MediaPipeHandLandmarkDetector | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.008 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
|
54 |
+
| MediaPipeHandLandmarkDetector | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 1.004 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
|
55 |
+
| MediaPipeHandLandmarkDetector | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.035 ms | 0 - 1 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
|
56 |
+
| MediaPipeHandLandmarkDetector | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 2.59 ms | 0 - 55 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
|
57 |
+
| MediaPipeHandLandmarkDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.585 ms | 0 - 32 MB | FP16 | NPU | [MediaPipe-Hand-Detection.tflite](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.tflite) |
|
58 |
+
| MediaPipeHandLandmarkDetector | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 1.068 ms | 0 - 37 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.onnx) |
|
59 |
+
| MediaPipeHandLandmarkDetector | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.641 ms | 8 - 8 MB | FP16 | NPU | [MediaPipe-Hand-Detection.onnx](https://huggingface.co/qualcomm/MediaPipe-Hand-Detection/blob/main/MediaPipeHandLandmarkDetector.onnx) |
|
60 |
|
61 |
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
## Installation
|
65 |
|
|
|
114 |
```bash
|
115 |
python -m qai_hub_models.models.mediapipe_hand.export
|
116 |
```
|
|
|
117 |
```
|
118 |
+
Profiling Results
|
119 |
+
------------------------------------------------------------
|
120 |
+
MediaPipeHandDetector
|
121 |
+
Device : Samsung Galaxy S23 (13)
|
122 |
+
Runtime : TFLITE
|
123 |
+
Estimated inference time (ms) : 0.7
|
124 |
+
Estimated peak memory usage (MB): [0, 4]
|
125 |
+
Total # Ops : 149
|
126 |
+
Compute Unit(s) : NPU (149 ops)
|
127 |
+
|
128 |
+
------------------------------------------------------------
|
129 |
+
MediaPipeHandLandmarkDetector
|
130 |
+
Device : Samsung Galaxy S23 (13)
|
131 |
+
Runtime : TFLITE
|
132 |
+
Estimated inference time (ms) : 1.0
|
133 |
+
Estimated peak memory usage (MB): [0, 1]
|
134 |
+
Total # Ops : 158
|
135 |
+
Compute Unit(s) : NPU (158 ops)
|
136 |
```
|
137 |
|
138 |
|
|
|
260 |
Get more details on MediaPipe-Hand-Detection's performance across various devices [here](https://aihub.qualcomm.com/models/mediapipe_hand).
|
261 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
262 |
|
263 |
+
|
264 |
## License
|
265 |
+
* The license for the original implementation of MediaPipe-Hand-Detection can be found [here](https://github.com/zmurez/MediaPipePyTorch/blob/master/LICENSE).
|
266 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
267 |
+
|
268 |
+
|
269 |
|
270 |
## References
|
271 |
* [MediaPipe Hands: On-device Real-time Hand Tracking](https://arxiv.org/abs/2006.10214)
|
272 |
* [Source Model Implementation](https://github.com/zmurez/MediaPipePyTorch/)
|
273 |
|
274 |
+
|
275 |
+
|
276 |
## Community
|
277 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
278 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|