qaihm-bot commited on
Commit
bd4b01d
·
verified ·
1 Parent(s): 9aacc75

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +12 -6
README.md CHANGED
@@ -35,10 +35,13 @@ More details on model performance across various devices, can be found
35
  - Model size: 13.3 MB
36
 
37
 
 
 
38
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
39
  | ---|---|---|---|---|---|---|---|
40
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.938 ms | 0 - 2 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite)
41
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.263 ms | 1 - 142 MB | FP16 | NPU | [MobileNet-v2.so](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.so)
 
42
 
43
 
44
  ## Installation
@@ -99,15 +102,17 @@ python -m qai_hub_models.models.mobilenet_v2.export
99
  Profile Job summary of MobileNet-v2
100
  --------------------------------------------------
101
  Device: Snapdragon X Elite CRD (11)
102
- Estimated Inference Time: 1.56 ms
103
- Estimated Peak Memory Range: 0.57-0.57 MB
104
  Compute Units: NPU (105) | Total (105)
105
 
106
 
107
  ```
 
 
108
  ## How does this work?
109
 
110
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/MobileNet-v2/export.py)
111
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
112
  on-device. Lets go through each step below in detail:
113
 
@@ -184,6 +189,7 @@ spot check the output with expected output.
184
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
185
 
186
 
 
187
  ## Run demo on a cloud-hosted device
188
 
189
  You can also run the demo on-device.
@@ -220,7 +226,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
220
  ## License
221
  - The license for the original implementation of MobileNet-v2 can be found
222
  [here](https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/LICENSE).
223
- - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
224
 
225
  ## References
226
  * [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
 
35
  - Model size: 13.3 MB
36
 
37
 
38
+
39
+
40
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
41
  | ---|---|---|---|---|---|---|---|
42
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.94 ms | 0 - 2 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite)
43
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.266 ms | 1 - 51 MB | FP16 | NPU | [MobileNet-v2.so](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.so)
44
+
45
 
46
 
47
  ## Installation
 
102
  Profile Job summary of MobileNet-v2
103
  --------------------------------------------------
104
  Device: Snapdragon X Elite CRD (11)
105
+ Estimated Inference Time: 1.55 ms
106
+ Estimated Peak Memory Range: 1.29-1.29 MB
107
  Compute Units: NPU (105) | Total (105)
108
 
109
 
110
  ```
111
+
112
+
113
  ## How does this work?
114
 
115
+ This [export script](https://aihub.qualcomm.com/models/mobilenet_v2/qai_hub_models/models/MobileNet-v2/export.py)
116
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
117
  on-device. Lets go through each step below in detail:
118
 
 
189
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
190
 
191
 
192
+
193
  ## Run demo on a cloud-hosted device
194
 
195
  You can also run the demo on-device.
 
226
  ## License
227
  - The license for the original implementation of MobileNet-v2 can be found
228
  [here](https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/LICENSE).
229
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
230
 
231
  ## References
232
  * [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)