korywat commited on
Commit
d22e903
·
verified ·
1 Parent(s): 900f0f1

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +39 -19
README.md CHANGED
@@ -19,7 +19,7 @@ tags:
19
 
20
  MobileNetV2 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
21
 
22
- This model is an implementation of MobileNet-v2 found [here](https://github.com/tonylins/pytorch-mobilenet-v2/tree/master).
23
  This repository provides scripts to run MobileNet-v2 on Qualcomm® devices.
24
  More details on model performance across various devices, can be found
25
  [here](https://aihub.qualcomm.com/models/mobilenet_v2).
@@ -34,15 +34,31 @@ More details on model performance across various devices, can be found
34
  - Number of parameters: 3.49M
35
  - Model size: 13.3 MB
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
 
38
 
39
 
40
- | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
41
- | ---|---|---|---|---|---|---|---|
42
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.906 ms | 0 - 177 MB | FP16 | NPU | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite)
43
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 1.253 ms | 0 - 49 MB | FP16 | NPU | [MobileNet-v2.so](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.so)
44
-
45
-
46
 
47
  ## Installation
48
 
@@ -97,16 +113,16 @@ device. This script does the following:
97
  ```bash
98
  python -m qai_hub_models.models.mobilenet_v2.export
99
  ```
100
-
101
  ```
102
- Profile Job summary of MobileNet-v2
103
- --------------------------------------------------
104
- Device: Snapdragon X Elite CRD (11)
105
- Estimated Inference Time: 1.38 ms
106
- Estimated Peak Memory Range: 0.57-0.57 MB
107
- Compute Units: NPU (105) | Total (105)
108
-
109
-
 
110
  ```
111
 
112
 
@@ -205,15 +221,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
205
  Get more details on MobileNet-v2's performance across various devices [here](https://aihub.qualcomm.com/models/mobilenet_v2).
206
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
207
 
 
208
  ## License
209
- - The license for the original implementation of MobileNet-v2 can be found
210
- [here](https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/LICENSE).
211
- - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
 
212
 
213
  ## References
214
  * [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
215
  * [Source Model Implementation](https://github.com/tonylins/pytorch-mobilenet-v2/tree/master)
216
 
 
 
217
  ## Community
218
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
219
  * For questions or feedback please [reach out to us](mailto:[email protected]).
 
19
 
20
  MobileNetV2 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
21
 
22
+ This model is an implementation of MobileNet-v2 found [here]({source_repo}).
23
  This repository provides scripts to run MobileNet-v2 on Qualcomm® devices.
24
  More details on model performance across various devices, can be found
25
  [here](https://aihub.qualcomm.com/models/mobilenet_v2).
 
34
  - Number of parameters: 3.49M
35
  - Model size: 13.3 MB
36
 
37
+ | Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Evaluation | Target Model
38
+ |---|---|---|---|---|---|---|---|---|---|
39
+ | MobileNet-v2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.905 ms | 0 - 175 MB | FP16 | NPU | -- | -- |
40
+ | MobileNet-v2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.253 ms | 0 - 37 MB | FP16 | NPU | -- | -- |
41
+ | MobileNet-v2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 0.919 ms | 0 - 2 MB | FP16 | NPU | -- | -- |
42
+ | MobileNet-v2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.623 ms | 0 - 62 MB | FP16 | NPU | -- | [MobileNet-v2.tflite](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.tflite) |
43
+ | MobileNet-v2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.862 ms | 1 - 15 MB | FP16 | NPU | -- | -- |
44
+ | MobileNet-v2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.678 ms | 0 - 66 MB | FP16 | NPU | -- | [MobileNet-v2.onnx](https://huggingface.co/qualcomm/MobileNet-v2/blob/main/MobileNet-v2.onnx) |
45
+ | MobileNet-v2 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.902 ms | 0 - 1 MB | FP16 | NPU | -- | -- |
46
+ | MobileNet-v2 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.906 ms | 0 - 8 MB | FP16 | NPU | -- | -- |
47
+ | MobileNet-v2 | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.188 ms | 1 - 2 MB | FP16 | NPU | -- | -- |
48
+ | MobileNet-v2 | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 0.901 ms | 0 - 2 MB | FP16 | NPU | -- | -- |
49
+ | MobileNet-v2 | SA8775 (Proxy) | SA8775P Proxy | QNN | 1.189 ms | 1 - 2 MB | FP16 | NPU | -- | -- |
50
+ | MobileNet-v2 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.901 ms | 0 - 2 MB | FP16 | NPU | -- | -- |
51
+ | MobileNet-v2 | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.189 ms | 1 - 2 MB | FP16 | NPU | -- | -- |
52
+ | MobileNet-v2 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.083 ms | 0 - 63 MB | FP16 | NPU | -- | -- |
53
+ | MobileNet-v2 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.43 ms | 1 - 19 MB | FP16 | NPU | -- | -- |
54
+ | MobileNet-v2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.503 ms | 0 - 24 MB | FP16 | NPU | -- | -- |
55
+ | MobileNet-v2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.848 ms | 0 - 14 MB | FP16 | NPU | -- | -- |
56
+ | MobileNet-v2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.681 ms | 0 - 24 MB | FP16 | NPU | -- | -- |
57
+ | MobileNet-v2 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 1.348 ms | 1 - 1 MB | FP16 | NPU | -- | -- |
58
+ | MobileNet-v2 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.971 ms | 9 - 9 MB | FP16 | NPU | -- | -- |
59
 
60
 
61
 
 
 
 
 
 
 
62
 
63
  ## Installation
64
 
 
113
  ```bash
114
  python -m qai_hub_models.models.mobilenet_v2.export
115
  ```
 
116
  ```
117
+ Profiling Results
118
+ ------------------------------------------------------------
119
+ MobileNet-v2
120
+ Device : Samsung Galaxy S23 (13)
121
+ Runtime : TFLITE
122
+ Estimated inference time (ms) : 0.9
123
+ Estimated peak memory usage (MB): [0, 175]
124
+ Total # Ops : 72
125
+ Compute Unit(s) : NPU (72 ops)
126
  ```
127
 
128
 
 
221
  Get more details on MobileNet-v2's performance across various devices [here](https://aihub.qualcomm.com/models/mobilenet_v2).
222
  Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
223
 
224
+
225
  ## License
226
+ * The license for the original implementation of MobileNet-v2 can be found [here](https://github.com/tonylins/pytorch-mobilenet-v2/blob/master/LICENSE).
227
+ * The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
228
+
229
+
230
 
231
  ## References
232
  * [MobileNetV2: Inverted Residuals and Linear Bottlenecks](https://arxiv.org/abs/1801.04381)
233
  * [Source Model Implementation](https://github.com/tonylins/pytorch-mobilenet-v2/tree/master)
234
 
235
+
236
+
237
  ## Community
238
  * Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
239
  * For questions or feedback please [reach out to us](mailto:[email protected]).