File size: 11,515 Bytes
e32a340
 
 
 
 
 
 
a1d250c
e32a340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f61ad2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e32a340
 
 
 
 
 
 
6808b9a
e32a340
6808b9a
e32a340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2511d31
9f61ad2
14c0c32
 
e32a340
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6808b9a
2511d31
e32a340
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
library_name: pytorch
license: bsd-3-clause
tags:
- real_time
- quantized
- android
pipeline_tag: object-detection

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/gear_guard_net_quantized/web-assets/model_demo.png)

# PPE-Detection-Quantized: Optimized for Mobile Deployment
## Object detection for personal protective equipments (PPE) with quantized model


Detect if a person is wearing personal protective equipments (PPE) in real-time.

This model is an implementation of PPE-Detection-Quantized found [here](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/gear_guard_net_quantized/model.py).


This repository provides scripts to run PPE-Detection-Quantized on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/gear_guard_net_quantized).


### Model Details

- **Model Type:** Object detection
- **Model Stats:**
  - Inference latency: RealTime
  - Input resolution: 320x192
  - Number of parameters: 7.02M
  - Model size: 6.7 MB
  - Number of output classes: 2

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| PPE-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 0.254 ms | 0 - 45 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.244 ms | 0 - 3 MB | INT8 | NPU | [PPE-Detection-Quantized.so](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.so) |
| PPE-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 0.508 ms | 0 - 6 MB | INT8 | NPU | [PPE-Detection-Quantized.onnx](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.onnx) |
| PPE-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.188 ms | 0 - 33 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.184 ms | 0 - 19 MB | INT8 | NPU | [PPE-Detection-Quantized.so](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.so) |
| PPE-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.351 ms | 0 - 36 MB | INT8 | NPU | [PPE-Detection-Quantized.onnx](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.onnx) |
| PPE-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.209 ms | 0 - 19 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.177 ms | 0 - 21 MB | INT8 | NPU | Use Export Script |
| PPE-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.409 ms | 0 - 20 MB | INT8 | NPU | [PPE-Detection-Quantized.onnx](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.onnx) |
| PPE-Detection-Quantized | SA7255P ADP | SA7255P | TFLITE | 3.784 ms | 0 - 15 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | SA7255P ADP | SA7255P | QNN | 3.772 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
| PPE-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 0.251 ms | 0 - 46 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.249 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
| PPE-Detection-Quantized | SA8295P ADP | SA8295P | TFLITE | 0.719 ms | 0 - 19 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | SA8295P ADP | SA8295P | QNN | 0.701 ms | 0 - 18 MB | INT8 | NPU | Use Export Script |
| PPE-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 0.253 ms | 0 - 44 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.25 ms | 0 - 3 MB | INT8 | NPU | Use Export Script |
| PPE-Detection-Quantized | SA8775P ADP | SA8775P | TFLITE | 0.529 ms | 0 - 14 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | SA8775P ADP | SA8775P | QNN | 0.505 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
| PPE-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 1.349 ms | 0 - 28 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 1.687 ms | 0 - 14 MB | INT8 | NPU | Use Export Script |
| PPE-Detection-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 5.138 ms | 0 - 3 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 3.784 ms | 0 - 15 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 3.772 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
| PPE-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 0.252 ms | 0 - 45 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.246 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
| PPE-Detection-Quantized | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 0.529 ms | 0 - 14 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 0.505 ms | 0 - 10 MB | INT8 | NPU | Use Export Script |
| PPE-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 0.438 ms | 0 - 34 MB | INT8 | NPU | [PPE-Detection-Quantized.tflite](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.tflite) |
| PPE-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.441 ms | 0 - 27 MB | INT8 | NPU | Use Export Script |
| PPE-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.33 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
| PPE-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 0.498 ms | 7 - 7 MB | INT8 | NPU | [PPE-Detection-Quantized.onnx](https://huggingface.co/qualcomm/PPE-Detection-Quantized/blob/main/PPE-Detection-Quantized.onnx) |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[gear-guard-net-quantized]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.gear_guard_net_quantized.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.gear_guard_net_quantized.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.gear_guard_net_quantized.export
```
```
Profiling Results
------------------------------------------------------------
PPE-Detection-Quantized
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 0.3                    
Estimated peak memory usage (MB): [0, 45]                
Total # Ops                     : 86                     
Compute Unit(s)                 : NPU (86 ops)           
```




## Run demo on a cloud-hosted device

You can also run the demo on-device.

```bash
python -m qai_hub_models.models.gear_guard_net_quantized.demo --on-device
```

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.gear_guard_net_quantized.demo -- --on-device
```


## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on PPE-Detection-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/gear_guard_net_quantized).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of PPE-Detection-Quantized can be found
  [here](https://github.com/quic/ai-hub-models/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Source Model Implementation](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/gear_guard_net_quantized/model.py)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).