Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -15,7 +15,7 @@ tags:
|
|
15 |
|
16 |
SESR M5 performs efficient on-device upscaling of images.
|
17 |
|
18 |
-
This model is an implementation of SESR-M5-Quantized found [here](
|
19 |
This repository provides scripts to run SESR-M5-Quantized on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/sesr_m5_quantized).
|
@@ -30,15 +30,35 @@ More details on model performance across various devices, can be found
|
|
30 |
- Number of parameters: 338K
|
31 |
- Model size: 389 KB
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
|
35 |
|
36 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
-
| ---|---|---|---|---|---|---|---|
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.332 ms | 0 - 1 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite)
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.973 ms | 0 - 4 MB | INT8 | NPU | [SESR-M5-Quantized.so](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.so)
|
40 |
-
|
41 |
-
|
42 |
|
43 |
## Installation
|
44 |
|
@@ -94,16 +114,16 @@ device. This script does the following:
|
|
94 |
```bash
|
95 |
python -m qai_hub_models.models.sesr_m5_quantized.export
|
96 |
```
|
97 |
-
|
98 |
```
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
107 |
```
|
108 |
|
109 |
|
@@ -142,15 +162,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
142 |
Get more details on SESR-M5-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/sesr_m5_quantized).
|
143 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
144 |
|
|
|
145 |
## License
|
146 |
-
|
147 |
-
|
148 |
-
|
|
|
149 |
|
150 |
## References
|
151 |
* [Collapsible Linear Blocks for Super-Efficient Super Resolution](https://arxiv.org/abs/2103.09404)
|
152 |
* [Source Model Implementation](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/sesr)
|
153 |
|
|
|
|
|
154 |
## Community
|
155 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
156 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
15 |
|
16 |
SESR M5 performs efficient on-device upscaling of images.
|
17 |
|
18 |
+
This model is an implementation of SESR-M5-Quantized found [here]({source_repo}).
|
19 |
This repository provides scripts to run SESR-M5-Quantized on Qualcomm® devices.
|
20 |
More details on model performance across various devices, can be found
|
21 |
[here](https://aihub.qualcomm.com/models/sesr_m5_quantized).
|
|
|
30 |
- Number of parameters: 338K
|
31 |
- Model size: 389 KB
|
32 |
|
33 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
34 |
+
|---|---|---|---|---|---|---|---|---|
|
35 |
+
| SESR-M5-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.339 ms | 0 - 1 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
36 |
+
| SESR-M5-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.973 ms | 0 - 73 MB | INT8 | NPU | [SESR-M5-Quantized.so](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.so) |
|
37 |
+
| SESR-M5-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.083 ms | 0 - 2 MB | INT8 | NPU | [SESR-M5-Quantized.onnx](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.onnx) |
|
38 |
+
| SESR-M5-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.109 ms | 0 - 26 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
39 |
+
| SESR-M5-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.714 ms | 0 - 14 MB | INT8 | NPU | [SESR-M5-Quantized.so](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.so) |
|
40 |
+
| SESR-M5-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.821 ms | 0 - 30 MB | INT8 | NPU | [SESR-M5-Quantized.onnx](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.onnx) |
|
41 |
+
| SESR-M5-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 3.597 ms | 0 - 19 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
42 |
+
| SESR-M5-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 2.908 ms | 0 - 7 MB | INT8 | NPU | Use Export Script |
|
43 |
+
| SESR-M5-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 19.669 ms | 2 - 4 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
44 |
+
| SESR-M5-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.338 ms | 2 - 49 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
45 |
+
| SESR-M5-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.684 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
|
46 |
+
| SESR-M5-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.344 ms | 0 - 8 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
47 |
+
| SESR-M5-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.684 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
|
48 |
+
| SESR-M5-Quantized | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 1.342 ms | 0 - 2 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
49 |
+
| SESR-M5-Quantized | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.686 ms | 0 - 2 MB | INT8 | NPU | Use Export Script |
|
50 |
+
| SESR-M5-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.351 ms | 0 - 2 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
51 |
+
| SESR-M5-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.687 ms | 0 - 1 MB | INT8 | NPU | Use Export Script |
|
52 |
+
| SESR-M5-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.985 ms | 2 - 28 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
53 |
+
| SESR-M5-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 1.106 ms | 0 - 16 MB | INT8 | NPU | Use Export Script |
|
54 |
+
| SESR-M5-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 1.351 ms | 0 - 17 MB | INT8 | NPU | [SESR-M5-Quantized.tflite](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.tflite) |
|
55 |
+
| SESR-M5-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.599 ms | 0 - 12 MB | INT8 | NPU | Use Export Script |
|
56 |
+
| SESR-M5-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.592 ms | 0 - 20 MB | INT8 | NPU | [SESR-M5-Quantized.onnx](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.onnx) |
|
57 |
+
| SESR-M5-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.798 ms | 0 - 0 MB | INT8 | NPU | Use Export Script |
|
58 |
+
| SESR-M5-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.201 ms | 3 - 3 MB | INT8 | NPU | [SESR-M5-Quantized.onnx](https://huggingface.co/qualcomm/SESR-M5-Quantized/blob/main/SESR-M5-Quantized.onnx) |
|
59 |
|
60 |
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
## Installation
|
64 |
|
|
|
114 |
```bash
|
115 |
python -m qai_hub_models.models.sesr_m5_quantized.export
|
116 |
```
|
|
|
117 |
```
|
118 |
+
Profiling Results
|
119 |
+
------------------------------------------------------------
|
120 |
+
SESR-M5-Quantized
|
121 |
+
Device : Samsung Galaxy S23 (13)
|
122 |
+
Runtime : TFLITE
|
123 |
+
Estimated inference time (ms) : 1.3
|
124 |
+
Estimated peak memory usage (MB): [0, 1]
|
125 |
+
Total # Ops : 27
|
126 |
+
Compute Unit(s) : NPU (24 ops) CPU (3 ops)
|
127 |
```
|
128 |
|
129 |
|
|
|
162 |
Get more details on SESR-M5-Quantized's performance across various devices [here](https://aihub.qualcomm.com/models/sesr_m5_quantized).
|
163 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
164 |
|
165 |
+
|
166 |
## License
|
167 |
+
* The license for the original implementation of SESR-M5-Quantized can be found [here](https://github.com/quic/aimet-model-zoo/blob/develop/LICENSE.pdf).
|
168 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
169 |
+
|
170 |
+
|
171 |
|
172 |
## References
|
173 |
* [Collapsible Linear Blocks for Super-Efficient Super Resolution](https://arxiv.org/abs/2103.09404)
|
174 |
* [Source Model Implementation](https://github.com/quic/aimet-model-zoo/tree/develop/aimet_zoo_torch/sesr)
|
175 |
|
176 |
+
|
177 |
+
|
178 |
## Community
|
179 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
180 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|