shreyajn commited on
Commit
7fbec75
·
verified ·
1 Parent(s): e2a4196

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +63 -31
README.md CHANGED
@@ -35,8 +35,8 @@ More details on model performance across various devices, can be found
35
 
36
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
37
  | ---|---|---|---|---|---|---|---|
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 48.448 ms | 4 - 17 MB | FP16 | NPU | [SAMDecoder.tflite](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMDecoder.tflite)
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 12267.436 ms | 2517 - 2522 MB | FP32 | CPU | [SAMEncoder.tflite](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoder.tflite)
40
 
41
 
42
 
@@ -98,17 +98,17 @@ python -m qai_hub_models.models.sam.export
98
  ```
99
  Profile Job summary of SAMDecoder
100
  --------------------------------------------------
101
- Device: QCS8550 (Proxy) (12)
102
- Estimated Inference Time: 47.86 ms
103
- Estimated Peak Memory Range: 3.86-6.07 MB
104
- Compute Units: NPU (341) | Total (341)
105
 
106
  Profile Job summary of SAMEncoder
107
  --------------------------------------------------
108
- Device: QCS8550 (Proxy) (12)
109
- Estimated Inference Time: 11666.28 ms
110
- Estimated Peak Memory Range: 2526.26-2529.86 MB
111
- Compute Units: GPU (37),CPU (783) | Total (820)
112
 
113
 
114
  ```
@@ -129,29 +129,49 @@ in memory using the `jit.trace` and then call the `submit_compile_job` API.
129
  import torch
130
 
131
  import qai_hub as hub
132
- from qai_hub_models.models.sam import Model
133
 
134
  # Load the model
135
- torch_model = Model.from_pretrained()
 
 
 
136
 
137
  # Device
138
  device = hub.Device("Samsung Galaxy S23")
139
 
 
140
  # Trace model
141
- input_shape = torch_model.get_input_spec()
142
- sample_inputs = torch_model.sample_inputs()
143
 
144
- pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
145
 
146
  # Compile model on a specific device
147
- compile_job = hub.submit_compile_job(
148
- model=pt_model,
149
  device=device,
150
- input_specs=torch_model.get_input_spec(),
151
  )
152
 
153
  # Get target model to run on-device
154
- target_model = compile_job.get_target_model()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155
 
156
  ```
157
 
@@ -163,10 +183,16 @@ After compiling models from step 1. Models can be profiled model on-device using
163
  provisioned in the cloud. Once the job is submitted, you can navigate to a
164
  provided job URL to view a variety of on-device performance metrics.
165
  ```python
166
- profile_job = hub.submit_profile_job(
167
- model=target_model,
168
- device=device,
169
- )
 
 
 
 
 
 
170
 
171
  ```
172
 
@@ -175,14 +201,20 @@ Step 3: **Verify on-device accuracy**
175
  To verify the accuracy of the model on-device, you can run on-device inference
176
  on sample input data on the same cloud hosted device.
177
  ```python
178
- input_data = torch_model.sample_inputs()
179
- inference_job = hub.submit_inference_job(
180
- model=target_model,
181
- device=device,
182
- inputs=input_data,
183
- )
184
-
185
- on_device_output = inference_job.download_output_data()
 
 
 
 
 
 
186
 
187
  ```
188
  With the output of the model, you can compute like PSNR, relative errors or
 
35
 
36
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
37
  | ---|---|---|---|---|---|---|---|
38
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 47.928 ms | 4 - 22 MB | FP16 | NPU | [SAMDecoder.tflite](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMDecoder.tflite)
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 10523.061 ms | 2482 - 2528 MB | FP32 | CPU | [SAMEncoder.tflite](https://huggingface.co/qualcomm/Segment-Anything-Model/blob/main/SAMEncoder.tflite)
40
 
41
 
42
 
 
98
  ```
99
  Profile Job summary of SAMDecoder
100
  --------------------------------------------------
101
+ Device: SA8255 (Proxy) (13)
102
+ Estimated Inference Time: 48.42 ms
103
+ Estimated Peak Memory Range: 2.11-19.94 MB
104
+ Compute Units: NPU (337) | Total (337)
105
 
106
  Profile Job summary of SAMEncoder
107
  --------------------------------------------------
108
+ Device: SA8255 (Proxy) (13)
109
+ Estimated Inference Time: 11251.67 ms
110
+ Estimated Peak Memory Range: 2591.24-2594.47 MB
111
+ Compute Units: GPU (36),CPU (782) | Total (818)
112
 
113
 
114
  ```
 
129
  import torch
130
 
131
  import qai_hub as hub
132
+ from qai_hub_models.models.sam import SAMDecoder,SAMEncoder
133
 
134
  # Load the model
135
+ get_sam_decoder()_model = SAMDecoder.from_pretrained()
136
+
137
+ get_sam_encoder()_model = SAMEncoder.from_pretrained()
138
+
139
 
140
  # Device
141
  device = hub.Device("Samsung Galaxy S23")
142
 
143
+
144
  # Trace model
145
+ get_sam_decoder()_input_shape = get_sam_decoder()_model.get_input_spec()
146
+ get_sam_decoder()_sample_inputs = get_sam_decoder()_model.sample_inputs()
147
 
148
+ traced_get_sam_decoder()_model = torch.jit.trace(get_sam_decoder()_model, [torch.tensor(data[0]) for _, data in get_sam_decoder()_sample_inputs.items()])
149
 
150
  # Compile model on a specific device
151
+ get_sam_decoder()_compile_job = hub.submit_compile_job(
152
+ model=traced_get_sam_decoder()_model ,
153
  device=device,
154
+ input_specs=get_sam_decoder()_model.get_input_spec(),
155
  )
156
 
157
  # Get target model to run on-device
158
+ get_sam_decoder()_target_model = get_sam_decoder()_compile_job.get_target_model()
159
+
160
+ # Trace model
161
+ get_sam_encoder()_input_shape = get_sam_encoder()_model.get_input_spec()
162
+ get_sam_encoder()_sample_inputs = get_sam_encoder()_model.sample_inputs()
163
+
164
+ traced_get_sam_encoder()_model = torch.jit.trace(get_sam_encoder()_model, [torch.tensor(data[0]) for _, data in get_sam_encoder()_sample_inputs.items()])
165
+
166
+ # Compile model on a specific device
167
+ get_sam_encoder()_compile_job = hub.submit_compile_job(
168
+ model=traced_get_sam_encoder()_model ,
169
+ device=device,
170
+ input_specs=get_sam_encoder()_model.get_input_spec(),
171
+ )
172
+
173
+ # Get target model to run on-device
174
+ get_sam_encoder()_target_model = get_sam_encoder()_compile_job.get_target_model()
175
 
176
  ```
177
 
 
183
  provisioned in the cloud. Once the job is submitted, you can navigate to a
184
  provided job URL to view a variety of on-device performance metrics.
185
  ```python
186
+
187
+ get_sam_decoder()_profile_job = hub.submit_profile_job(
188
+ model=get_sam_decoder()_target_model,
189
+ device=device,
190
+ )
191
+
192
+ get_sam_encoder()_profile_job = hub.submit_profile_job(
193
+ model=get_sam_encoder()_target_model,
194
+ device=device,
195
+ )
196
 
197
  ```
198
 
 
201
  To verify the accuracy of the model on-device, you can run on-device inference
202
  on sample input data on the same cloud hosted device.
203
  ```python
204
+ get_sam_decoder()_input_data = get_sam_decoder()_model.sample_inputs()
205
+ get_sam_decoder()_inference_job = hub.submit_inference_job(
206
+ model=get_sam_decoder()_target_model,
207
+ device=device,
208
+ inputs=get_sam_decoder()_input_data,
209
+ )
210
+ get_sam_decoder()_inference_job.download_output_data()
211
+ get_sam_encoder()_input_data = get_sam_encoder()_model.sample_inputs()
212
+ get_sam_encoder()_inference_job = hub.submit_inference_job(
213
+ model=get_sam_encoder()_target_model,
214
+ device=device,
215
+ inputs=get_sam_encoder()_input_data,
216
+ )
217
+ get_sam_encoder()_inference_job.download_output_data()
218
 
219
  ```
220
  With the output of the model, you can compute like PSNR, relative errors or